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AS A MEANS OF STRUCTURING SPECIFICATIONS
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ABSTRACT

Complex design problems are characterized by a multitude of
competing requirements. The designer of such a system
frequently finds the scope of the problem beyond his concep-
tual abilities and attempts to solve this problem by
decomposing the design problem into smaller more manageable
subproblems. Since design requirements form the interface
between the users of a system and its designers, a
disciplined framework is required for the decomposition of
the design problem into subproblems which will best satisfy
the overall problem objective.

Cluster analysis is a heuristically based technique by which
attributes of a system are sorted into groups; such that,
the degree of "natural" association is high among members of
the same group and low between members of different qroups.

The purpose of this thesis is to investigate the use of a
specific cluster analysis technique,' developed by Dr. Raphael
Andreu. As a means of imposing a framework upon the
requirements for an existing computer operating system
forming the first'step in the decomposition of the global
design problem into subproblems. It is envisioned that the
imposition of such a framework on design requirements will
provide new insights and understanding of the relationships
among requirements which may verify the design or suggest
improvements to the design of a sample operating system.,

Stuart Madnick
Professor of Management
Thesis Supervisor

80 7 14 076



~Apo'd tor lbiiblic, keleae

AN N ETIATIN O' LtiSTR ANALYSIS TECHNIQUES

'AS, A MEANS OF -STRUCTUR.ING SPECIF.ICIATIONS

IN, THE DES IGN, -OFj COMPLEX SY STEMS

by

TIMOTHY, A._.HOLDEN

B.S. U.Z. Naval Academy
(1972-)

SUBMIfTTED, INPATIAL- FUILFILLMENT
OF THE REQUtIREMENTS FOR, TgE

D.EGREE OF

OCEAN, ENGINEER

'AND FOR THE-,DEGREE, OF

MASTER'OF SCIENCE' IN MANAGEMENT

) at, the

MASSACHUSETTS INSTITUTE ,OF TECHNOLOGY'

June,, 1978'

Q Timothy A. Holden,198

Signature of Author.... 1 .,4 0...a.Ole,# ...

Cfiepartiment of Oceain Engineering,
May 12, 1978

Certif ied by.
Thesis SUPLervisor, Siodan S of Man pgement

Certified' by.,(k.
Thesis fuper lsor, Departme t of Ocean Enigineering

Accepted by.**.
-Ciimn Department Committee

Accepted by.4... 41 4.**4.. . *..

Chai ran, Departmental G.raduate Coiniittee



C -2'

07 AN INVESTIGATION 4OFCLUSTER ANALYSIS TECHNIQUES
'AS A MEANS OF _STRUCTURING SPECIFICATIONS

IN -THE" DESIGN OF COMPLEX ,SYSTEMS.

by

TIMOTHY'A. HOLDEN

Submitted to the Department of Ocean Engineering on
May 12,- 1978 in partial fulfillment 'of the
requirements for the-Degree of Ocean Engineerandto

the Sloan School of Management on
May 12', 1978 in partial fulfillment of tho

requirements for the Degree of
Master of Science in )Management

ABSTRACT

Complex design problems are characterized by a multitude of
competing requirements. The designer of such a system
frequently finds the scope of the problem beyond his concep-
tuaI abilities and attempts to solve this problemby
decomposing the designproblem into smaller more manageable
subproblems. Since design requirements form the interface
between the-users of a system and its designers, a
disciilinecd' framework is required for the decomposition of
the design problem into subproblems which will best satisfy
the overial problem objective.

Cluster anha"ysis s, a heuristically based technique by which
attributes of asystew are sorted into groups; such that,
the degree of "natural' association is high among members of
,e; same -ogup and low between members of different groups.

The purpose of this thesis is to investigate the use of a
specifid-cluster analyss technique, developed by Dr. Raphael
Andreu,. sa means of imposing a framework upon the
requ'risements for an existing computer operating system
for ing the first step in the decomposition Of the global
design problem into subproblems. It is envisioned that the
imposition. of such a framework on design requirements will
provide new insights and understanding of the relationships
among requirements which may verify the design or suggest
improvements to the design of a sample operating system.

Stuart Madnick
Professor of Management
Thesis Supervisor

I. . .. ......__ _........ ... . .



ACKNOWLEDGEMENT

The, author wishes to, ex ress his appreciation to the
fillowing people for their helg and guidance in the prepara-
tion and, completion: of this, ,re search: Professor, Stuart
Madnick of the A. P. Sloan School of Management, "thesissupervisor; Chryss6stomos. Chryssostomid, Department of

Ocean Engineering;, thesis advisor; and Kevin J. O'To6le,
Department of ocean Eingineering , academic advisot.

The following graduate students in the Sloan, School of
Management aiso poided i nvaiuable assitannce in the
critique of this , research: Raphael Andreu,- Sid Huff, and
Chat-Yu Lam.

The author also wishes to- thank his true friends for their
assitance and understanding during the three years :at MIT.

©~o 
e

I;lIA



U? - -

if
TAblit OF, CONttNtS-

Chat I.,: -Deiilption o6f the, Problemfs, Inherent in,

Large 'Sca-le. -,System Dedsign 9

L l Problem Description 9,

.2 Sytem De6velopment Cycle 1

1.3, Summary 17

1.;-4', Thesis Outline 1

Chapte~r II: Cluster,,Analysis .Methodology 'And the 20

becomtpositioiv Facility,

21 The Cluster Analysis. Problem 20

:2.2, tolutidhn of the Cluster Analysis, Probl'em

by the Application of, graph Decompositioni

Techniq ues

1.) D~domposition Methodology 35

Chapter .11:Sample Op06rating system 39,

'3.1 General Characteristics of a Large Sdale

Computer Operating Systemh 39

3,.2, S ample Operating System Description 41

3.3 Summary

Chpter 'IV:, ReqluirementsDfnto

4.1 Requirements Definhition- Methodology 5

4.2 Summari.y

ChapterV: Interdependency Assessment Methodo1loly

5.1. intetdependency Assessment Methodoily 62

5.2 Summary '



Pago 5 is mnissing, atnd cannot~ be
obtained or~ reconstructed,

Paigo 118 &appoarm to be mi.siig,
but the text on the praceding
page seems to indicatt, pna@
a~rc only mignumborad,



'(Tablje* of Conjtenjts. .. ... ntine)Pg

8.1 Desig~n Overview of,6 thec Sample

~oerating System, 12 6-

8e 2 Functional Comparison of, the, Levels

-and Layers, of the- Sapeoperating,

System .with the Subproblems,

-; Generated -by the Decompositicn

Methodology 3

4,1'3-Inconsistenc -ies Identified in the

Comparison-of the Sample Operatinig

Systemn and the, Decomposition

Methodology13

SA8. Sunmmary 143

Chapter IX: Concluding Statemenits Concerning the

Applicability of the Decomposition

Methodology to -the Design Process and

Recommendations for Improvement 145

9.1 bjective of the Methodology 145

9-.2 Aecbidnendations for Improvement. 147

9.3 Summuary '5

bibliogrAphy .153

Appendix At Formal Specification of Evaluation

Parameters 157

'Appendix B: Algorithm fojr'the Identification fo60

Kernel Subsets 10



V,(Table of Cotns.......oniud ae

AppenidiX, Cd: Preliminary Set, -of, Requ ients 163

Appenidix D;_ PrelimfinarV, :Interdedency

Assessment Resul, ts.J6

Appeindix E: Resuts- of the Interactive

Decompositio#-Package for the

First Iteration, 199

-APPE IND IX, F:, Main- Subproblems- Resulting, from the

Virst Iteration. of the Dedomposition

Methodology21

APPENDIX' G:. Final .Requiremzents Definition 221

APPENDIX H: F.inal Interdependency Assessment

Results 258,

APPENDIX I: Results of'the Interactive

'7 Decomposition Package for the

Second Iteration 28_2

APPENDIX J: Main, Subproblems Resulting 'froni the

Second tte :Ation of the Decomposition,

Analysis30

APPENDIX K: Linkage,- Interface Assessment 2



"LIST .OF FIGUREES"

1. yste DeeomntC e12'

3.1 -Extenhded' Maciine. CohdePt-of: a Generalized

3.i2 .Hditardhicil Design ,Strucdturev of aGeneralized,

operating System 46

6. 1 Problem Strudture Ir*plied by the-First Iteration

of the Decompdsitiori Meithodology 72

7.1 Problem Structuire Implied'-by' the- Secon d- Itera--

tion of the -Decomposit-ion Methodology 99

8.leiralrchical Deslign Strudture of_ the Sample

Opejrating System. 129



-9-.

DESCRIPTIoN OF THE PROBLEMS tIHERENT

IN LARGE SCALE 'SYS TEMDESIGN

1.1. Problem Description

The design of complex systems is characterized by many

of the following- problems as identified. by Andreu and

Madnickic.

There is ,no established framework in which the design

decisions can be coordinated among various design

groups. This can lead to an optimization of sub-

problems, but sub-optimization of the aggregate design

pVroblem.

The adaptiveness of' the system to changes in opera-

tiohal requirements is made difficult and time

consuming since such changes often impact the entite

system.

The incorporation of new technology into an existing

system is cumbersome and expensive since there is no

systematic me;ns of assessing the impact of new

technology on the system operation.

System performance evaluation may require an -enormous

model to represent the entire system.

'Raphael Andreu and Stuart- Madnick, "A Systemat-i Approach to
the Design of CorivZex Systems: Application to DBMS Design and( .REvaluation", Center for Information Systems Research, Revort
32, Sloan School of Management, MIT (Cambridge, MA, 1977) -. 6.



• The designer has no means to determine if the

,problem has been completely and consistently defined,

Z ,or alternatively,overeconstrained.

The most common technique currently in -use to simplify the

design of a complex syitem is to decompose the global problem,

into smaller sub-problems. However, without proper guidance,

this leads to many of the following problems as documented

by Mandel and Chryssostomidis.2

The subdivision, of a given-problem into lower level

,problems imposes limitations on -accuracy and'is,

therefore, an approximation. This implies that the

-optimization of the subproblems does notnecessarily

lead to total system optimization.

.Addsigner of'a specific sub-problem is likely to

have incomplete knowledge of the total problem.

'The decomposition process should'be independent of

any specific technology or implementation technique.

The designer of a large scale system-is faced With a number

12 of possible pitfalls as the size- and comprlexity of the

design problem increases. The problems can be loosely

defined as a lack of a consistent framework in which to make

design decisions. Fred Brooks3 has defined this problem as

2,

P.Mandel and'-C. Chryssostomidiaq, "A, jesign-Methodology Fori
Ships and Other4 Complex Systems", Phil. Trans. R. Soc., London
A.273, (London, 1972), p. 8 7 .
$Fred Brooks, The Mythicat Man-Month: Essay. on Software
Engineering, (Reading, MA), p. 16-17.



one of conceptual integrity" and -identified this as the most

important'onsideration' in, system, design. Conceptual

integrity in this context dictates rigorous design sequence,

for,,if there is, no rigor in the, design, theresulting

product of the design process is highly .idiosyncratic, n. the

worst case, it is based. on the faiiure history of the parti-

cipants. As a. final measure, rigorous design' should survive
it simplementation and provide a framewo:k for inteliectual

:,control, 0changes. to design requirements change.

1 !.2 .System Development Cycle

n order to develop a' rigorous and consistent framework

f,6r the design prOcess, one must examine structure Of the

design probiem as it. exists in general in order to propose

improvements to the structure. Although, many procedures have

be;i- defined for a typical computer software desigh problem,

Andreu favoredrthe followinl@System Development Cycle az

Pp;00ed, by Freeman -to illustrate the nature of-he design

problem..

Filure I is a representation of the five steps which

Freeman recognized in the design cycle. Each step consists

of an input and output and an Operation which take place

in each step. The function of' each step is how further

defined from the perspective of the need to establish a

framework in which the global,-design problem may be

decomposed.
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(I)- ;NEEDS ANALYSIS&

Inpu4t:, Primitive needs,, system- context, -userl probIeOs.
Operation:, Identification of major functions and constraints.

i):-. Ou, pt:, ,General re'quirements.. i
Output:, 60l' ~ qrmhs-

(2), PUIIONAL SPECIFICAION

Inputi Requirements, ,;ystem analysis of ,context.

Operation" Conversion-'of needs into explicit functions, selection
of operati onal constraints.

Output: Specifications of system functions, qoh-tra'nts, and. . . . .. PbJeciivei.- " - ,.. .. .

ARCHITECTURA'L ESIGN,

Input: Specifications, general contet of desired sy'stes,
knowledge of similar problems.

Operation: Discovery of prbblem structure, identification of major
pieces of system, establishment of... relationships,
between parts, abstraction.

Output: Structural description of system.

(4) DETAILED DESIGN SPECIFICATION

Input: Architectural descriptin, proqramming environment'
details,

Operation: Abstraction, elaboration, choice of alternatives.
Output: 'Blueprints for programs.

(5) IMPLEMENTATION

Input: Blueprints.
Operation: Encoding of algorithms and data representations,

testing, debugging..

Output:;, Improved system.

FIGURE 1.1: The System Development Cycle 4

.; ( ,4RarhaeZ Andreu, "A Systematic Approach to the Design andStincturing
" of "om~e Software System" unpublished Doctoral thesis, Mi'± Sloan

School of Management, Februar, 1978.
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S1.. NEEDS ANALYSIS:'

Thisstage:of: -the design process. inbrporated, a careful

assessment of the, needs -which the fi.ial system, must futill,

This stage is generally the .os.; unstructured of all the

stages; since a new system must be designed to respond.tO

the- user'"s percieved needs. The information, derived from

the stage ranges from the most nebulous of statements- of

need, to statementst of: such detail as to actually specify

im plementation. The. lack of structure in, this phase, of the

design process Is likely to introduce& errors which will 'be

rePreated throughout the remaining stages of .the. design

S- .process.

in order to avoid the errors, introduced by a poor needs

(- analysis-phase and driven by a desire to apply the decom-

position methodology to an-untested system design,, an

existing well-documented comPuter operating system was

selected for analysis.

l.I.-2 F'UNCTIONALt spECIFICATION:

Thisstage of the design process is concerned with the

development- of documentation aids, in order to generate

formal and accurate ,statements of the-system requirements.

Typically ifunctional. specifications are characterized by

many of the following properties: dompleteness, consistency,

correctness, testability, non-ambiguity, design freedom,

and robustness to change. Obviously, the generation of

functional specifications is not an easy task, usually taking



.. plae, as, an iterative or refining process in which the

global system requirements _are continually refihed- until the-

.systeim is-complete-ly defined.

Numerous research. efforts are, currently :underway :to

formalze. the process of functional specifications. One,

,particular-method developed. by TRW, Defense- and Space..Systems.

Group, is called: the: software: Requirements Engineering

Methodology (SREM). It is .an automated system which

atempts tO enforce the discipline 'of a framework in, the,
individual interpretation. Of the probiem by the design

engineer to reduce the; ambiguity of software, requirements.

and thereby lead, to increased consistency in functional

specifications.

) In addition, other "problem statement languages"

developed by iechroew and others6 have identified two

classes of requirements; specifically, 'functional" require-

ments, what the system is to do and "performance" rquire-

ments, regarding constraints-on measures of system behavior.

No attempts were made in this thesis t implement any

of the problem statement languages, as such. However, a

series of guidelines for requirements definition were

established to insure that the requirements had all the

characteristics of a "well-defined" set of requirements. The

6Carl G. Davis and Charles..R. Vick, "The softwareO Development
System"l, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. SE-3,
No. 1' (Jan 1977), p,.70.

8Sloan School, YXT, "System Docuthentation, Zangau g Report",.

unpublished Sloan SchO6l report, WIT, Sloai School .Cambridge,
.9 A), p.2.
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classification of functional versus, performance requirements,

developed. In, the problem statemetnt languages, were used in
the interdependency assessment. pocesst.

-1..3 ARC4,;TECTURAL, DESIGN:

This stage of the design process is Concerned withthe

diiscvery of problemi structure in the design as defined, by

Freeman. That is, the id~ntification of major sub-problems

ofthe system and the establishment of' relationships between

1 these sub-problems. Utilizing this technique, Andreu has

noted the existence of':both a problem structure and a system

structure inherent in each system design.

The problem structure is concerned with how different

-parts of the system interact from a design standpoint; that

( is, what parts of the system can be designed independently,

of others as opposed to what paxts must be designed at the

same time. Theproblem structiue then is used to identify

the trade-offs that must be taken into account betweeh

completing solutions of the design problem. The concept of

a- problem struct# e was a 1key element used in the inter-

dependency assessment phase.

The system structure, on the other hand, is concerned

with 'how system parts interact once the system is designed

and in operation. Andreu has pointed out that the two

structures do not necessarily coincide:

"Traditionally the 'design problem structure'

has been determined by the system structure in



Q that it is very comm6n to organize the design

of anew system around: 'standalrd,' system

structures, drawn "from similar systems, pre--

viouslyI designed.! "

AoKs previously stated, a subdiviSion of a given problem into

lower level problems imposes limitations on accuracy and is,

therefore, an approximation. Secondly, unless the process

is rigorous, it is highly idiosyncratic. The goal of any

proposed framework must be to reduce the designer's depend-

encY on "standard" system. sttuctures in such a way As to

j rigorously decompose the design problem into wel!-defined

subproblems.

Therefore, a framework: is required at this stage of; the

(design process, toresolve the trade-offs that may exist

among system requirements as implied by available alternative

implementation techniques. Andreau has Proposed a framework

which addresses this issue based on cluster analysis tech-

niques. The purpose of the framework is to:

.expiicitly establish the nature of the problem by

decomposition;

0 establish a consistent framework in which trade-offs

can be assessed.

The methodology constitutes a well-structured series of

activities that the softwar'e engineer should perform during

the design process. The value of such a methodology, claims

Andreu,

lAndreu, P.41.
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It) ...i that the conce6pt 'of inter-relatdddesign

tubpkobldems-stdmming fromi the explicit in'ter-

ZI'dpendencies among requiements, consdtitutes, a-

,better- basis ~for the subse0quent: detailed. designr

stageis than the! original disjodinted, set of

requiremhents.

1.2'. 4 DETAILED 7DEStGN 'SPECIFICATION:

This stage constitutes the Actual design of ptogram

modules as opp6.sed to syptem'desiln. 'The* work-of Parnas9

,has. fo~cused-on the, means. of structuring -the softw4are- modualei

in order to, implement the system. This stage Ism beyond the

concern, of this-thetsi.

1.2.5 IMPLEMTATION:,

9 (9 This stage is concerrned ith the actuail rogranmming of

the system. tf forts. by Liskovo have attempted-to develop

structural prograxnming tools to systematize the activities

at this stage of the design. This stage is also beyond the

concern of this thesis.

1. 3 -Siaimiary

The system development cycle is characterized .by

8
9Andreu, p.41.r David Z. Parnas,, "On the Cri.teria to be Used in Decomposing

System into Modutoee", Communications -of the ACM., Vol. 15,
Numhber 12 '(Dec.. 19.72), pp. 2053-1058.
10 Bazibara Libkov dnd Valdid -Berzins ', "An Appraisal of Programh
Svecifications", Computation Structures Group Memod 141-1, MITj~

Laborator9 for Computer Sci'ence (Apl'il 10'.) v.1-1 2 !

-- .----- '- ----- - '- -- ' '



C~) increasling 4ttempts to stucture or systematize eachstage

of -the, -design- process . The ,purpose of this: thesis. is to

apply the techniques developed -by Andreu inorder 'to verify

the design of the compUter operatind ,system uider investi-

gation by the application of ihe methodology as proposed -by'

Andkeu.

i. 4 Thesis Outline

The computer operating system entitled, "The Sample

Operating System (S-)" was developed by Professor Madnick,

and Professor Donovan I of the MIT Sloan School of Manage-

ment. This system design problem was selected for examina-

tion since it is a reasonably non-trivial and well-documented

software design problem.

Chapter II is devoted to a discussion of cluster

;analysis techniques in general, and a description of the

speific- methodology proposed by Andreu;

Chapter III presents a description of the general

characteristics of the sample operating system.

Chapter IV presents both the procedure and the results

of the requirements definition phase for the sample operating

system.. This chapter presents in detail the gutidelines which

were used to generate the requirements and, by example,

demonstrate some of the pitfa-.s encountered in requirements

definition.

(2Stua t E. Madnick and John. J. DOnovan, 06er1at "
((ewo 'Y'.rk, 1974), ..81.41.



Chapter V .presents- .the methodol'og for the interdepend-

ency assessment -phase and- the resuip ting input for analysis

Chapter vI presents rthe eultt of fhe.first decomposi-

tion -using the. Lalytic techniques previously described

These results' are. .onsidered an interediate step;: therefore,

the results are analyzed as motivation to continue along. in

the next set ,de compositon.

chapter VII ,presents the resilts of, the, second decom-'

position, analysis and compares -the ,esults. with those

previously obtained.,

Chapter VIII presonts a comparison of. the ,design frame-

(N work, implied by the decomposition methodology vis-a-vis the

actual design of the sample operating system.

The final chapter will ,present suggestions for changes

or improvements to the cluster analysis techniques proposed

by Andreu, based on the experience of the User.



~CHMATERX'II

"CLUSTER- ANALYSIS, METHODOLOGY AND
THE' DECOMPOSITION FACtLTY

This chapter is deVided ,ito three sections in, order to

gr-eent , the cluster analysis ,methodology as appied: to the

generaI decomposition 'problem.

First, the need for such- a methodology is inotivated by

establishing the objective pf such cluster analysis tech-

._iques and ,the types of :problems encountered- in the applica-

tion. of the methodology. Definitions of general terms are

Offered for use through the rest of the. discussion.

Second, a, solution to the decomppsition problem using'

cluster analysis techniques is defined. Specifically, the

,decomposition problem is defined and the, techniques forL partitioning the requirements set are presented according to

the work by -Andreu
Finally, the use of the decomposition software analysis

techniques developed by Andreu are presented.

2.1 Cluster AnalYsis Problem
Cluster analysis techniques ,may be defined as analysis,

techniques to sort the attributes of objects into groups

such: that the degree of natural association is high among

members of the same group and low between members of dif-

ferent groups. When successfully applied, the techniques



) scan be used' t o eveal prolemstructure as relationshipsq

that exit-fot a -glven set of- data

'In order to apply these techniques, one must be capable

'of the, following::

Definition, of #grup 'of. objects- tdbelustearedjp in

this case, design requiremnents for a computer

operating system.

Selectionand commond definition of attributes common

to all objects in this group; in this case, the

[ singular attribute selected was the-existence of an

interrelationship between a given pair of requirements.

AThedefinition of interrelationship will be discussed

Vin. Chapter V.

K) . Definition of an evaluation parameter so that the

degree of: natural association ambng members of

clusters may be measured".

. Definition of an algorithm to find the best Partition

of. a group of objects. Specifically, an algorithM.

which defines a partition with the "best ' measure

evaluation parameter without having to evaluate all

the possiblepartitions.

The following definitions have been applied to the

cluster analysis problem.

In general, a group of objects o, may be defined as

follows,:

Let 0 : (Ol,...Oi...0N} be the set of Objects in

0N



0i wh .the dlustrs are to be ideitifled. These

are, mp6sed of individual desig4i :requirements

andalto rpreSent the nodes ,of any graphs which

are drawn, N ( may be defifed as ,the cardinality

of- a set'of objects -that is, the number- of

objects-within:a giVenset.

'Each object may Se. characterized:by a set of attributes:

X :{X!..X ,.. ..XN} rfteasured in some ,consistent scale.

In the case of the discussioni the, attribute is the

existence of interdependencies.

Therefore, introducing a slight change of notation, an-object

i e 0, is characterized by a vector.

' A :{(aij, aii - 1 if nodes O1 and.Oj, are related, an

interdependency exists; = 0' therwise. This isthe so-called,

adjacency matrix in which it is assumed that aij,- I when

is J.

The adjacency matrix is constructed by making a pair-

wise assessment ,of the relationships among. all pairs of

requirements. The adjacency matrix is simply an NXN matrix,

where N is the, number of requirements objectS. Once a Set

of objects and theit interrelationships have been established-

the' next problem is defining evaluation parameters to measure

the.degree of natural association.

2.1.2 EVALUATING SET DECOMPOSITIONS:

Any method for evaluating the success of a decomposition

-scheme must consider the strength of intra-subset ralation-
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shi, Ad: some means fr ong two 0. Aetr-

Therepf', the, oilowing evaluation parameters were. definid-

by Aiidreu.12

S" A mea sure of how tightly coupled the modes-

in-a ,given subgraph are is defineda s -follows:-

S~~;d is' 4e i .. nL.' '''d'".fNumbet .6f links, joiing nodes]

in, t4ame 6#tdtt-

where a subgraph is a graph composed of a ,subset of the

original members, of 'the total graph of nodes, to be decomposed.,

Strength is evaluated by measuring the number of links

joining nodes in the same subset minus N-l, N being the

c ardinal!ity of the given subset, normalized by a factor of

N(N-I)/2. In a, subset of N nodes, N-i id the minimum number

of interdependencies which can form as subgraphs without

disjointed components; thus, the,nubek of links 'in excess

of N-I is a measure, of subset internal coherence, beyond the

minimum required for, it to. be coherent .At all. The factor

'N (N-l)'/2 is the maximum number of links that may exist in aF subset of cardinality N; normalizing by the factor permits

ddomparable measures for 'subsets, of different cardinality.

Coupling: i meisure of- the extent to which two sub

sets are independent, and is defined as follows:

Number of links actually joining 1
nodes of two different subsets j

C=

N'M

Andreu, p.lO00



SGIn order to- evaluate the "cpling parameter, the number of

'intkerde dis ealihdbtentwo -nodes. 'in -diff ert

subsetS are counted, and -no6rttliz2d by the factor N'M; where

N9, ahd :M are the cardinaities 'Of ~t~two- subsets.

M1easure:i, The finazl evaluation parameter of clustering

sucess fokr, given- partition, may, be defined as follows:

Z S - E Cij

'The -measure parameter represents the, summation of all the

strengths of all :subsets in 'the given ,partition minus the

-couplings associated with all possible pairs of- subsets.

P is defined as a partition or subgraph of the original

requirements, set. Appendix A 'contains a, formal definition
of each of the evaluation parameters listed above.

The parameters are defined so :that the measure value

should- -be large to indicate a good evaluation of the natural

assbciation of a partition. generated by cluster analysis

techniques. Therefore, given a group of partitions one

would select the partition with the highest value of measure

as representing the "best" partition.

Given a requirements set, attributes in the fotm-of

interdependencies and evaluation- parameters as previously

algorithm which will generate the best partition for a

requirements set of non-trivial size.
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_G d-marixzah

Given. an adjacency matrix ,and evaluatin parameter as

.,prdvious*y defined,, a technique, is now needed. to deal,, with a

non-trivial decompoSition-prolM> which would, not require,

having to- investigate or cOmpute, all feasible decompositions

that exist- for a given requi:rements ,set. A heuristically

based procedure was. selected 2by Andreu since he has

deionstrated. that neither ,an optimization nor a graph

theoretic approach is feasible-to solve a problem ,of non-

trivial size. Therefore, the various families of cluster

analysis techniques and heuristic graph decomposition tech-

niques wtera investigated to dtetmine, which were the rmost,

feasible.

) in general, there are two generic, ..types- of -,cluster

analysis methods, the heirarchical method and the ,partition-

ing .method. The following discussion wil lfocus upon the

similarities and differences, of the two methods, concluding

with the rationale for the method, selected for use by

AndreU.

However, prior to a discussion of actual cluster analy-

sis methods#, the following d4finition of the concept of a

distance matrix mut -be presented to transition from the

adjacency mrtrix of interdependence established between

design requirements to a similarity matrix, defined cluster

aialysis techniques The binary assessment procedure, used

for identifying requirement with dependences is simplistic-

Andreu, pp.2 03-109.
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i but it is not useful lor defining distancds As, establiished-

"for EuclIdan geometry. For the purposes of cluster analysis

techniques; sPecificily, 69omputing simlarity matrix S,

scale conversions may 'be needed prior to the representatiOn

of a 4pair of objects xi and Xj into an entry of the form

Sij, - (X! , X -) in the similarit ,matrix. -The scale conver-

sions must meet 'the properties of "metrics" which is one type

of distance function.

The formal properties of metrics have been identified

by Mderberg as follows:

"Let S be a symbolic representation for a measurement

space and let X, y, and z :be any three points in S.

Then a distance function D is a metric if and only if

> t satisfies the following conditions:

1l. D,(x,y) - 0 if and only if x-y

2,. D(xy) >0 for all x andy in S

3. D(Xy) = D(y,x) for all x and y in S
,14

4. D(xy) < D(xkz)+D(y,z) for all x, y, and z in S

The first property implies that x is zero distance from

itself and that any two points zero distance apart must be

identical. The second property prohibits negative distances.

The third property implies symmetry by requiring the distance

-from x to y to be the Same as the distance from y to x. The

fourth property, the triangle inequality, requires that the

length of one side of the triangle be no longer then the sum

of the lengths of the other tWo sides. The satisfaction of

1 414iohaOZ R. Anderberg, Cl44ter Ana lusis for Ali.ation,
(New York, 2973), 9p.9.



these p-orties is reqjUkrddso that thei corice t, of distnc

is ,the, Eutclidean distance ,of, elereitat- "gimtry. i Once the

property isestablis hed the welil-known popert ies of,

Euc-idean ,distance geometry can be Aplidd~t64i=-m-larity

'matrices.

A, distance, function- which satisf ies .tho_ first %three,

cond~itions 'of t m~etric, 'but not- the -triangle6 inequality is:

known as a semhiinetric. Furthermoke, a meitric which

additionally satisfies the following property

D (x jy)*MAX{D,(x,z) l,(y, i)} for all x, y .n -Z'i

is called an ultrametricziince the latter ptoperty is -con-

siderably stronger than, the triangle ine~uility..

Andreu1  has pa intea out that the concept, of cluster 4

analysis it not-a pr'ecise technique since it is- heui stica'lly

based. Furthermore, ashfield'and Aldehderfer1 6 have shown

that, the various cluster analysis, methods, do, in f act,-

generate,-different soliutions- to the-same data; therefore,

the value of the methodology is strictly diependdnt upon:

1Y- The~hnber of subsets into which the original set

is decom~posedlj where the maxi~ihm N and this

'2) the extent to which the clusters are individu~ally

coherent And collectively are distinctly different,

lRoger K. Blaslifield -and ,Mark S', A'Zdekderfdr . "A Consumr[ Report on ~CZu-tezP Anzalysis Software", Pn~l~i tt

V ~- ~ Univ.ersi-ty Report (PA, 1973), p. 3.
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--(9; ; The..two approaches ,to, €luster anaiysis techniqu~es,,

discssed. in. ,the following section, differ in the means by

S. i- -which, dheyg approa ch-:a, mdle-ground solution to either

-extr ee

-,'.31: Agglomerative Techniques:

The fIirt basic method of cluster analysis is called;

the agglomerative- method. The ,measure of similarity, used

is -Euci!dean distance. The,methodology 4egins with N

ciusters,: each object in 6 is: a simple. member cluster. 'The

method proceeds as the NxN distance matrix is ,seprhed ,fd;,

the 'two most similar entries, which are then combined' to

form a cluster. The method continues ,until all objects

:. :belong, to, one single, cluster. This method yields, a result

which exhibits a strictly heirarchical-pattern of 'relation

,ships, in which the. number of levels or ranks equals the

number of stepsin clustering.

The form of linkage; i.e., the criteria -used to ;join

.objects together to form clusters, may vazy from a, single

linkage cluster, in which an object is joined, to a c!Uiter if

it has a .certain level .of similarity with: at least one member

of the cluster, to the complete linkage method, which

requires that, an object must .achieve a specified 'level .of

slimilarity, with, all members. of a given cluster before being

joined to it.

2.1. 3.2 Partitioning Method:

" The second method' of cluster analysis is called the

i
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pairtitioning-Imithbd.i T~h _,Artiiigmeodifrsro

the .agglomeratiemethod-in 'hat the solution does notihd in'td
portray :a 'he#4rarchical telatinsihi- among the, ntities. The

resulting clusters obtained, Ifrom a-partitioning solution are.

discrete. And, exis"t at.asnl ranik.

T he method procedsas, -follows: the user selects a,

statistic to be.optimized during the cluster analysis; in

this case, measure :(M), .All objects are initially assigned

to- a single cluster of N objects. The user must choose .the

number of clusters (-K)- which are believed to exist in; the,

data. 'The methodoiogy must then use, some -scheme to determine

K leader/seed objects.. These Seed objects represent a

"Kernel of. objects, about which the remaining .bjects are

clustered. An object is thin assigned' to a, cluster with the

;nearest centroid. The method then recalculates the..centroid'

of the cluster:, and the process is then repeated until there

,are no membership changes which will improve the overall

solution. 'This method is iterative in the solution tech'-

nique, as an object may actually change, its membership.from
one cluster to another during the process. Theagglomerative

method,, on- the other hand, requires only one pass through

the data for a complete solution. The partitioning method is

more tine-consuming, but allows a certain robustness to the

solution since-each cluster is re-examined and members may be

re-assigned. However, the-me thod requires, the -specificati6n

of- certain limiting parameters "a priori" specifically-: -the;

-A|K!-
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C3 user -,must- speifyK, finai member of clustering before

proceedi.' wih the:partitioning.

'Another distind!on .among partitioning methods is

relited-to the caculatioh of 'the-centroid for eact dluster..

As Bpintedout byBlashfidld and Aldenderfer,

"The, combinatorial methods require the recalculation

of the centro'd of a cluster after each change on

membership. Non-combinatorial methods calculate

centroids only after the complete pass has been made.

Therefore, combinatrlai method of control calculation

isconsidered 0to-be more conservative."1I

The partitioning method thenavoids, the major weakness 6f'

the agglomerative method, since the. iterative, nature of the,

partitioninq method allowsearly decisions regardingwhich

object is merged into which cluster to be re-examined as the

algorithm proceeds. For this reason, the partitioning

cluster analysis method; was selected for use by Andreau.

In order to implement the partitioning method of cluster

analysis, one is faced with the following problems:

1) Conversion of the binary adjacency matrix into a

similarity matrix which satisfies the requisite

metric properties.

2) Identification of the K parameters which is the

number of seed nodes.

3) 'Identification of the actual nodes which are the

seed nodes.

( 1 B4,ahfield, p.9.



0 A dreau investigatedthe use of heuriStiC graph dec0rn

poitontehnquess P'art icularly the concept of. 4a "dore

set" to solve the preceeding problems.i The techniques are

described" in, the fcllowiing section.

2.2 Solution'lof.the Cluster Analysi! Problemby the. Graph

Decompositiont Techniques

The ,purpose of this section is, to present the tech-

niques proposed by Andreau fo the solution, of cluster analy-

sis, problems; specifically, the conversion of the adjacency

matrix andidentifidcation of partitions through the bse of

heuristic graph decomposition, techniques.

In order to solve the cluster analysis pioblems-pre-

() viously defined, Andreau investigated the use of heuristic

graph decomposition techniques. The definitions-of require"

ments, interdependencies, and the adjacency matrix still

apply to the problem at hand. The following definitions

apply to graph decomposition techniques:

Core set: CSi associated with. a node -. in the set
1X

CS, :{OjIOj S.T. aij = 1}
i J"

that is the set of all nodes rehAted, to

OP , including itself.

Connectilvity of node 0

ci = ICS'i - 1, where ICSiI is defined as the

cardinality of set X

Conceptually, one is searching the adjacency matrix fbr
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0 objects with a high connectivity whose coresets do not

interferewith each other. Once identifiedb, these objects

f 6rm-the Kernel of subsets of Objects whose elements are

strongly related. As determined by Andreu 8once the nuber

of Kernel-subsets, has been identified, the remaining nodes

can be assigned to. the subsets in which they best fit; where

the measure of best fit isi as previously, defined 'by the over-

all rdeasure (M). ,The actual procedure used to identify the

subsetsis, Presented in Appendix -B.

the procedure requires the "a :priori" specification of

the parameter (k), which iS related to the number of sub-

graphs expected to result from the decompOsition. Andreu's

experiences indicated'that obviously 1 < K < Nwhere N

equals the °number of nodes or objects subject to decomposi

tion. Andreu stated more strongly that K should be set at

a value somewhat higher than the expected number of sub-

graphs, yet the lower the Value of K, the more conservative

is the result since fewer Subgraphs will be :identified

considering the interferences among many core sets. In order

to normalize the selection process. and to make the facility

more robust, the selection process for K was redefined as

follows;,

K = percentage of the maximum value of connectivity,

j i, for the entire graph.

Note that the value of K has been redefined as a percentage

-* value of Ci; this implies that K should be initially

Anadreu, p.125.
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Q se1ected' asahihvlu 0)i order todil cne~a

tive rcesult.-

Andreu then investigated the possibility of generali,-,

zing, the definition of the, .6cre set as folIows:

CS, : O.iO such 'that the minimum path:

0 5<PT whereP

Note. that in ,the case vihere P,- i:, t4s is. equivalent to the:

-previous definition of the core, set. The definition, of P'l,

'is' required in order to specify a, minimum ,path. A more,

qomplete explanation is offered' by Andreu,19 briefly the

point is that the minimum path among objects, Oi, .0 0', isj, KI
as follows,:

When minimum path ( i - o) Minimum Path (o0,- )

then either

1), 0,, '0 are both. adjacent. t0 0.

or 2) 'Oi is adjacent to, neither 0j nor q.

This is true only in the case where P-; therefore, Andreui

uses! P=l when computing the core sets as previously defined.

A, starting,,point for partitioning, cluster analysis has

,thus been- identified-, by -the calculation and identification

of core sets as follows:

1) ,select K .percentage value of maximum value of

-of connectivity;

2) select the node with the maximum value, of

connectivity Ci.

1 Andreii, p.136'O,
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i3 3) select, the co set, consisting -of all objects

O~for whidh:C K(.A)

The'finalproblem involved in generatin- a partitioning

methodology was to deveop- a method to convert the binary

adjacency matri into a similarity matrix meeting: the metric

c COnditions of Euclidean distahce; since the single binary

c0efficients dervied directly from entries in the adjacency

matrix fail to meet these properties. Andreu- incorporated

the 'core set !" concept 'previousiy introduced in order to

define, entries in the similarity matrixas, follows,:

" " " I si CS j
J ,CSi Cj

whore Sij - Similarity matrix distance measure between

objects 0. and 0

CSi - Core set for noe 0.

For the special case, for some pair of nodes 0i and Ok such

that Si-0kthat is (CS)C,) then it is true that SijSck

for all J. The nodes O and f0k are equivalent with respect

to the rest of the graph as described by the matrix S. For

cluster analysis purposes, this special case represents the

case for which nodes i and' k are equivalent. The pair is

collapsed to form a single node.

This section has determined that there are several

problems which must be solved in order to apply cluster



0 anAlys is- te,6hhI-u tostdeopsitio1T Ro)4lems. ie
'ha used heuristic graph decomposition. technique in order

to:

Identify-the K parameter which represents the maximum,

Value of such nodes for a given graph.

Convert the adjacency matrix defined by a binary

assessment of interrelationships into a similarity

matrix meeting the metric properties of Euclidean

geometry.

The final section of. this chapter willpresent a stepwise,

-j discussion of the application-of these-techniques to the

decomposition problem.

o-

2.3 Decomposition Methodology

The decomposition problem was' analyzed utilizing a soft-

ware package by Andreu. The package is written in Fortran

and runs on the PRIME computer system of the Sloan School of

Management.

The features available with this system are as foilows:

1) Enter the adjacency matrix developed from the

requirements interdependency assessment. This

function is performed using the "ENGR" command.

2) Compute a distance matrix for the graph under analy-

-sis using the "DIMN" command. The package actually

'j computes the distance matrix P=I is assumed by the

package, also it treats collapsed nodes not as

single nodes.



3) Co 4mmputethe similarity matrix rom, the& d-itance

matrix, uiing ..the: "sI MA"' command.

4) Generatpe.an Initial, partition using, heql INPA"

command, to identify the, ore ofsubgraphs." likely

to ,exhibit-high strength., The. usermust speci-fy

Value for the-K .parameter.

5) Use the-clustering algorithms to -generate clusters:

and, return, a value' for measure,, -strength,- and

coupling.4

There are three clustering methods available tor use:

He6irarchical Clustering Method 1 - -which merges the,

4"closest" pair of clusters, measuring the .distance

between two clusters A and B by the, mean of. the

distance between the nodes of A and the nodes, of .B.

That, is,
A (A, B) .Z - (a, b) .

whereNA and Nt ;epresent the catdinality of, A and

respectively, the summation, is"over all -the elements

a e A and, b e B.

Hedixarchical Clustering Method 2 - which merges the

pairs of clusters which lead to a minimum mean of the

.distance' between all pairs ,of nodes in the cluster

resulting from the merge. That is,

minimize k = IEs (aa 1)
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where N. = the ,cardina.ity of the.set -mdter A

the Summatibn is over all, palirs of nodes .

H irarchica! Clustering MethOd 3- Which merges the

two, clusters A and- B that 'lead to a minimization. of,

the parameter 'yi

.... "+N N Z~s (a., al-NA .(a,al)- ' s(b,bi)

where the first summation is overall pairs of nodes

in A and B, the second. overal Il pairs, in A, and the-

third overall paitrs in B. This method evaluates each

clustering step as a function of thep partition para-
meters before and after the clustering and, therefore,

tends to produce the best partitions; i.e., those

with the highest measure.

Additional facilities exist in, the software package to

perform, a. n 'mer of Additions and deletions from the graphs

and to print out the results.

[ The analysis package was designed to recognize a single

decomposition problem at a time. Therefore, the package

always deals with a current graph; that is, the fundamental

-- working entity that the package is currently working on. In

addition, Steps 1 through 4 must be accomplished-,prior to

invoking Step 5. Any change in the order will generate a

system error.
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C) CHAPTER I

'SAMPLE OPERATING SYSTEM

The SampleOperating System, developed by Professor

Stuart E. Madnick and John J. Donovan2 0 as a pedagogical,

tool to illustrate the basic functions of a computer opera-

ting system, was selected as the design problem for- analysis.

-The selection of an-existing, well-documented system was

dictated by a desire to insulate the decomposition analysis

from any problems associated with -poor needs analysis.

The Sample Operating System is composed of all the

functions normally associated with a computer operating

system; however, due to its strictly Od ggical nature, it

has some unique features as well. It was conceptually

convenient to break the system down with its functional

areas for descriptive and requirements definition-purposes.

The following discussion will highlight the general functions

of the Sample Operating System.

3.1 General Characteristics of a Large Scale Computer

0perating System

In most-general terms any-operating system is a group,

of programs within a computer system which manage the

hardware/software resources of the computer, and thereby

serve as the interface between the user's programs and the

resources of the computer.

~~Qj) 20 -

Madnick and Don-ovan, p.381.



Madnhick ,and MDonovan have defined the foll6wing entities

withn a omptier ;system

useikr onewho desires to utilize the computer resources,

job:, any collection-of adtivities needed to ccmplete

the work desired-by the. user. A job may' be
further subdivided into steps, tasks,, or

processes.

job step.i units of Work which must be dohe sequentiafly;

namely, compile, load, and execute.

task: a program or Job subdivision which is the basic

unit or work for the .operaiing system.

process:. a complete sequence of instructions that are

(functionally/computationally independent of

other processes,

The normal resource management functions of the perating

system-may be gehdraizedinto the fol-lowing four 'functions:

Keep track of a resource;

Enforce a policy that determines which user gets a

[H given resource, especially to resolve conJiicts

arising from competition for the same resource.

. l-ocate a resource.

[ . Reclaim a resource.

The functiohal resources of any large-scale-computer System

may be described, as folows:

* Memory Management Functions

. Pocessor Management Functions

U: -?|-- ------ -,



Q..Devic angment, Fuhctin

,-Information, MAagem~nt; Functions

thOe def iiionsq,, management' futnctionAs,. and' resouirces ,P-r -,

Vi6tidIy defi1nd&will be 4dopted' 'it order tofully describe

the, character istics of the: Sample Op erating System.

3. Sample Oeraiting' System ,Descriptiohn

The a-,ple Op erating, System,,. As described.bya 1-.dnik

anid, Donovan, is conceptually designed aroudd a process,k

recognizingthat. a, process is 'the smalledst 'computational

t a erefore , has, certai ,equ imentst n.esary f

is support. Thus, the Same bOprating System -implements,

a basi& system, nucleus reqdird for a, comlete system;, yet

(), does not include other capabilities such as langudge

processors or iltility'programs.

3.241 EXTENDED MACSiN CdONCEPT:,-

At them st basic, level, a computer Processesos oly

specific hardware istructins; such as ADD and LOAD. In -the

Sample Operating, System it. was necessary to ,provide: the,

basic functions tor process support asadditional hardware

like instructions at a'level above the basic machine instruc-

tions. these instructions are called-extended instructions

and ate implemented bymeans of the ouperieor Call

Instruction. These instructions are conceptually similar to

subroutine calls which enablethe uter to performcertain

resource management functions at a higher level than the bare

machine. For: example, SVC 'H' is used to halt a job &and

I
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0 sgnal the supe tisor process. Each extended machine,

ins- ruction, cal-ls a handler routine and may be& user cal1able.

The, bsic h&rdware irstrctions of the ,machine combined

,with the operating system proided "supervior instructions"'

comprise the inst'tuction :set of the extended machine. The-

Kernel of, this operating system -runs on -the bare machine,

the user's programs run on the extended machine-. FigUre 3.1

represents the extended machine concept.

3'.2.2, HEIRARCHICAL M!ACHINE -STRUCTURE:l

;Since the Sample operating System was intended' to be

'primarily a pedagogical toql, a -ayered system architecture

called heirachical operating system structure was selected

as the basis for -system design. Basically, the methodology

allows the segregation of major functions of the-operating

system into a heirarchy of capabilities. Its major adVant-

ages include,:

It is a powerful means of proving the correctness

and maintaining the operational integrity of the

operating- system.

L Lower layers of the system provide se!vices to higher

layers onlyvia well-defined interfaces.
The modular structure enables the easy identification

of the major functions of the operating system.

In order to implement the heirarchical concept in con-

junction with the extended machine concept, it was necessary
to define the: following.:

. - . Certain key functions needed by many of' the system
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(9 programs
(processes).

FIGURE 3.1 Extended Machine Concept of a
Generalized Operating System



modulet , could be separated into an "innerextendedt

machoine ,.

.Certain modules, which- were not utilized as. key

functions yet still operatLingsystem modules, could

be separated out and run on the extended machine in

essentially the same way as a user's process.

It is, therefore, apparant that each module of the operating

system must be identified as running, either in -the inner

extended machine, the outer extended machine, or as a

process.

Forfurther clarification, Madnick and Donovan have

generalized the inner/outer extended machine concept into

levels of the extended-machine, and all operating system

functions that run as processes can interrelate and are

generalized into layers of processes. The Kernel of the

operating system then is all these modules ,that reside in the

extended machine and , therefore, do not include operating

system processes.

F'or purposes of the Sample Operating System design, the,

basic functions of the operating system have been placed in

the Kernel, and as many tasks-of the operating system as

possible have been placed into separate system processes.

in this heirarchical implementation, we impose the following

restriction: a given level is allowed to call upon the

services of lower levels only; i.,e., those levels closer to

( the bare machine. This restriction requires well-defined
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C) interfaces and synchronization schemes tht oughout th-eSamp e

Operating System.

Figure 3.2 graphically portrays the heirarchical

operating- system trtucture.. [

'The three concepts implemented for the design of the,

sampie Operating .system desigh' (that is, process focus,

,extended-machine concept, and heirarchical structure) have

evolved 'into a system ;ith the following features:

. ,process synchronization semaphore, used extensively

for resource allocation synchronization;

• message: -syatem for interprocess communication;

. five levels and' layers of the Sample Operating System-

Levels' - Process Management, lower module

Memory Management module

Process Management, upper module

Layersi - Device Management module

Supervisor Process module

A brief description of the function of the levels and layers

is provided to further clarify the structure. of the Sample

Operating System.

3.2.3 PROCESS MANAGEMENT, LOWER MODULE:

This module enables the Sample Operating Sys*tem to

support multiprogramming and the basic system primitive,

operations required for interprocess synchronization.

The basic primitives as previously described, are the

so-called P-V operations. Both operations act on a semaphore
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which has an associated integer-vaie and, serves as a.

countinq. lck -as, follows:

P,-op~peration-: IFSemaphore -Value > ,0 then

Value =Value-i

IF Semaphore Value < 0 then

Value = Value-i and the process,

is ineligible to allocate the

given resource.

Vrbperation: IF'Semaphore Value > 0 then,

Value = Value+l and no process is

4, ineligible to allocate the given

resource.

IF Semaphore Value < 0 then

Value - Value+l and there is a

process Waiting. to allocate given

resource.

Since there isa semaphore associated with each resource,

the P-V operations can serve as a lock where semaphore value

initially = 1. By requiring a' P-operating before accessing

and a V-operating after completion, the integrity of the

resource is ensured.

3.2.4 MMORY MANAGEMENT MODULE:

Thiszmodule performs the operations necessary for

dynamic allocation and freeing of memory for job partition

-allocation and for allocating space for use by the oPerating

system.
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0 3.2,.5 ,PROCESS, MANAGEMNTt , UPPER MODULE:

Thismodule provides the routines for the control of

processes; i.e., process creation and deletion. The -module

also',provides for interprocesscommunication with buffered

messages . This module was split from the Process Management,

lower module since it depends on, the functions of memory

management to allocate or free memory areas to store System

information concerning each process and to provide -temporary

'buffers to store interprocess communication messages..

3.2.6 DEVICE MANAGEMENT MODULE:

This module runs as a separate prooess; hence, it is

considered- a layer of the operating system. There is one

device management module per device which provides the

routines necessary to issue the appropriate input/output

commands to external, devices. This module depends heavily

upon the interprocess communlication message facility to issue

i/o and to interpret the status information for areturn

message. Device management for this service is simple since

all devices are dedicated and consist only of card readers

and line printers.

3.2.7 SUPERVISOR MODULE:

The supervisor module, also runs as a separate process

of the Sample Operating System;. Specifically, one per job

stream. The superyisor provides interfacing for all the

froutines needed to- rtun a job. In particular, the supervisor

process isrresponsible for coordinating the following:
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01) Reads, ina: job streami.

-2) Allocatds a partition- of memory for each job in

sequence.,

3) Crtates and-starts the appropriate device manage-

1 -ment proess.

4) Loads the user's object deck into the partiton.

:51), Creates and starts a process in the given partition.

Since the-supervisor process is not-needed until

the user's job ends, it stops running and waits for

a message signalling completion of the-user's job.

-6)- Finally, when -compition is signalled&, the super-

visor cleans up by destroying the allocated parti-

tion of memory,, and goes to the next job input

stream.

3.2,8 USER'S PROGRAMS ANbD PROCESSES:

Initially the Sample-Operating System creates a single

process for each job; however, the user is free to create

additional processes to run in parallel. The 'user'-s job runs

in problem state with non-zero protection key assigned,;

thereby, restricting user access (to privileged instructions

and memory areas external to the user's allocated partition).

The nucleus routines, such as P-V operations, are
restricted from the user and cannot be accessed by the user's

job. However, the interprocess communication message

facility is available to the user and can be utilized for

interprocess synchronization of user processes.

..........~......... . .. . . . . . ...--. - ' - i
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-REQUIREMENTSDEFINITION'

The purpose of this chapter is to describe the,-method

ology of the requirements definition: for. the Sample Operatig-

System. The requirements were. defined from a description, of

the Sample bperating. System and program listings as ptovided,

by Madnck and Donovan, subject to certain guidelines

established by Andreu- to Insure that as much as possible

the requirements are defined in a clear, correct, and

cOncise manner.

It, must be stated at the outset .that requirements

definitionwas, the most time-consuming portion Of this

() analysis. The definition.phase was repetitively -iterated as

requirements were defined more clearly, -ma3e less ambiguous,

corrected, discarded, combined, Separated, and new requirer

ments added continuously. Since one can become completely

embroiled in the .problem, it is essential that the require-

ments'be reviewed periodically ;!  an interested third party.

The initial methodo'logy for ,requirements definition was

p roposed by Andreu 23 and was based on his experience with

the .problem. Andreu began with a set of requirements for a,

database management system and sought to refine those

requirements as they existed. For the, Sample Operating

System, however, no such precise list Of requirements

2 Raphael Andreu, "An Exercise in Software Design: From
Requirements eto Design ProbZem-Structure", MIT- Sloan SchooZ
unpublished report (June, 19.7), pp. 3-15.



. -''~'

S 52.

existed. Therefore, it;wak neessary to draft a- set of,

req-irmehts #rOm a textual description of what the system

does uting program listings, to resolve unclear isues .

-Cohseq'uentlyi the Andreu methodology was sUpplemented'with

additional guidelines based on these experiences in defining-

'requirementsk.

The following section wil-l define the methodology and

by way of" example, demonstrate what constitutes good or poor

if definitions of requirements.

4.1 Requirement Definition Methodoloy[

4.1.1 DEFINITION CLARITY:

, equirements should be stated clearly and concisely.

It is conceptually difficult to deal with requirements which,

are verbose or deal with more than. one specific issue. In

addition, requirements interdependencies ar.e assessed on a

one-for-one basis. Therefore, each requirement for the,

sample Operating System was limited to a single sentence,

covering only one issue. The requirements for theSample

Operating System are presented in Appendix G, and each

requirement statement is followed by a definition of the

requirement and a statement of implications of that require-

ment for the design of the system. This format was valuable

for it enabled a- single sentence requirement.definition

statement, yet it faciii'tated further amplification of the

design requirement which was very helpful in the inter-



dependency assessment phasei

4 2SCOPE OF' DEFNITION:

'Requirements must not 'be stated in very general terms,

or in terms dealing with, issues beyond the scope of design.

For example: The Operating system must be, capable of

maintaining-memory resources. This is a general state-

ment characteristic of all operating-systems by

definition. This statement does nothing to fur'ther

define characteristics of the Sample Operating System.

In, addition, no requirements were defined for the

following functions: system reliability, documentation,

and system security, simply because none-of these

issues wre addressedas needs of the scmpe Operating

System, and therefore, weeeyond the scpe Opef the

design.

4.1.3 IMPLEMENTATION INDEPENDENCE:

As stated by Andreu and Madnick2 4 requirements should

not specify an implementation scheme that may be used in the

T design of the system. Clearly a requirement which specifies

how a requirement is to be implemented biases the design

process. Specifically, such a procedure preciudes the

design from considering alternative solutions toa given

design problem'. Thespecific implementation scheme maybe
appropriatewithin its limited realm of consideration, but

may not be optimal in the context of the overall design

problem. Finally, any implementation scheme, specified

2 Andr~eu and Madnick, p.42.
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pinevitably affge ts, other requiaementdes in. othe

st nst of eig p re i. The criteria. for requirements

dihition Is, sim ly t hat the requireitht 'definition, m ust

state'only what is,- to, be~dondbT6 and; -not how.

For example: the statem~nt,. "A process can, issueA cki'

'to, re ad' the- text andt name of the message sender" ;, this

violates the guidelinres since the statement defines the

means. of implementation. The requitemdnt focuses on

how a process recognizes 'the text, and name of a message

sender, rather than what was intended.

Therefore, the requirement was re-written, as: "The

receiving process may read the name and text from the

originator".

4.1.4 SYSTEM.STRUCTURE INDEPENDENCE:

Any definition of requirements should avoid biases

toward pre-established assumptions about the structure ,6f the

final design according to Andreu. 25

This guideline is very subtle in its application, and-

represented the most difficult guideiine to fulfill since

the Sample Operating System had been designed and was

described in terms of its final structure. Conceptually,

anyone seeking to define a non-trivial system must organize

'his thoughts in some manner to avoid total confusion. The

most logical framework for organization is in terms of the

functional requirements of the system. The most general

"25 Andreu, "An Exercise in Software Design", p.46.

[7 "
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functional requirements for an operating. system, .focu.- upon

the roli as.a, resourcemanager of memory, processors,

devices, and files,. Therefore:, one tends, to define require-

rents in the framework, and the trivial decomposition

solution, woul-d, define four distinct subproblems which

correspond to' those functional requirements. Clearly, such

a solution would offer no new in'ights into the structure of

the design problem.
For example, the requirement "This ,opercating :system

must be pedagogical and modularly structured", was

considered to violate the guideline. The Sample

Operating Systemwas designed to be pedagogical.

Although it is generally recognized that the most

effective method of achieving pedagogicail clarity is

through modular design, such a statement is constraining

upon the system designers and, th-trefore, was re-written

as follows: "The operating system must be designed as

a pedagogical tool ". The resulting decomposition of

the design requirements should indicate-what degree of'

modularity was achieved in the actual design.

4.1.5 INDEPENDENCE AMONG-REQUIREMENTS:

This guideline implies that all requirements must be

semantically independent; namely, that redundant require-

ments must be eliminated.

For example: the two requirements IBasic system

primitives and certain routines are restricted from the
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0user, the :use: of which will generate an, etrkr" and

,The operating syste shall protect itSelf from the use,

of supervisor routines: by the user' are redundant; the-

former being implied ,  by the latter. The former

requirement was, therefore, eliminated.

..6 SIMPLICTY,:

Each requirement should address one well-defined

capability that 'the final design is to demonstrate. The

purpose of the decomposition methodology is to assess inter-

dependencies among individual requirements, and to group

:similar requirements together. Therefore, grouping, require-

ments by definition masks the decomposition.

Many requirements were originally defined with multiple

capabilities. It was necessary, therefore, to separate each

capability with a separate requirement.

For example: the following requirement, originally

written as a single requirement, was separated into

four distinct requirements: "A process synchronization

mechanism must, be provided.

1) to serve as a lock on a database.

2) for timing of synchronous processes.

3) for synchronization of the message facility.

4) to lock a device.

4.1.7 NO STAND-ALONE REQUIREMENTS:

Requirements which are only remotely concerned with the

final design should be avoided; for examplei features which

I' -W$
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may be, added to an opeationalr system at a later time
i1ilustrate this p~nt.

J?6k example. 'The- t64quiremd1t, "iThe ,superlv ,i sor ;process

must bj modularized so that improvements to the~system

can be easily accomplished",-satisfiei this guid4line.

The requirement ihdicates, that improvements to the

system are anticipated, yet it does not limit the

requirement by specifyig, what improvements will be

made later.

4. 1 8 PLAUSABILITY:

Naturally, a requirement should avoid the impossible;

therefore, statements -hall be eliminated which imply

requirerdents which are:

Q ) . not available with current technology;

i in violation of fundamental physical requirements;

clearly Violating other requirements.

For example: The requirement, "The input/output

devices are limited to card readers for input job

streams and line printers for output", implies that no
spooling system is available. Thisin turn dictates

that job scheduling be accomplished oa a first-come,

first-served basis.

Initially, itwas felt that such non-capabilities

(i.e., lack of spooling capability and 'ack of fiie

'system) should be explicitly stated as, a requirement

rather than inferred. However, the assessment ,f
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have, been ,difficult 'to, acmpl' sh. Therfore, the ack

of a certain capability was not addressed in require-

tents, definition,.

In addition to the previous guidelines established by

An dreu, the following additional guidelines were developed.

4.1.9 SEMANTIC INTER TATION:

-The requirements should be def-ined in a manner that

limits semantic interpretation. This guideline resulted,

from an examination of the various, "problem statement

languages" which -are currently being investigated. Statihg

requirements formally, in a problem language statement,

could not only reduce the ambiguity of the requirement, but

aid in the interdependency assessment phase. Although no

'specific language was employed for requirement definition,

the basic structure and intent of a rigorous definition

language-was used to define the requirements; specifically,

the requirements were defined as follows:

1. Utilize generally understood terminology; for

example,, kreciaim memory resOurces" versus

1garbage coilection". Reference to functions was

'1i by forma l terminology jb scheduler.

2 Avoid -terms which are not commital; for example,

!"operatihg system must supply • " instead of,

"operating system may or should be capable of..."

3. Recognize the distinction between existence
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statements and iperfiairnance statements. or- example,

the, requirement, "The process scheduler must time-

sliceCPU:usag-e among ready processes to- achieve

multi-rprogramming,, imp lies the existence ofsome

time3 quantum.

The actual -performance requirement is stated

separately as "Aprocess must be blocked, and con-

trol reldeasedto the process scheduler when a time

quantum of 50 ms is exceeded".

Limitations implied by existence statements must be made

explicit'in a performance.statement.

4.i.10 SCOPE OF REQUIREMENT DEFINITION:

The requirements must be defined at the same level of

scope. The customer, in this case being the person for whom

a system is designed, must have a macro-level objective

which the system must be designed to satisfy. P. iandel, and

-C. Chryssostomidis state:

i'The objective of most problems that man is capable of

conceiving or-is interested in solving is that of

choosing the course Of action which subject to, pre-

vailing constraints, optimizes the 'well being' of all

concerned. "

The following concepts have been identified at the outset of

the design process.

An objective function to be optimized for the design

(N process.

26
Mand~l and Chrydsdstomidis, p.85.

V|
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the d4esiger

IReqirements flow directly from the customer in

response to the overall objective of the system design.

The Objective function usually takes the form .of a -multi-

matrical expression to be optimized. and for most large-scale

computer systems, consists of the maximization of throughput

or minimization of response -time.

The objective function of the Sample Operating System

"is pedagogical clarity and, therefore, it is very difficult

to state that the objective ,function has not been ful'fill'ed.

For the purposes of the design of the. Sample Operating

System, a design philosophy has been identified which

defines the design criteria for the system on a macro-level.

The requirements that comprise the design philosophy

influence each.of the remaining requirements and, therefore,

were-not incorporated into 6the assessment process.

The design constraints usually serve to limit the

permissabie range of solutions of the problem. The

constraints, then, impose limitations on the designer which

affect the global design problem. In the Sample Operating

System, certain hardware constraints were imposed "a priori"

upon the design problem. Specifically, the operating

system must be designed to run on IBM/360 hardware. The

implications of this constraintaffect certain basic

functions of the operating system. Since the design con-

straints have been specified "a priori", such constraints

Lr. uhcosrit



have been separated from -the remaning system requirements

and, were not incorporated into the assessment process since

the constraints represent limitations on systdem design.

Finally, the system requirements are defined in direct

response to the customer'sobjectives. The system level

requirements must: be definedl at a level below the most

general of system *level statements, yet remain above the

level Which begins to limit the options of the designer.

4.2 Summary

The requirements- for the: Sample Operating System were.

defined in two iterations. The preliminary set of require-

ments was defined initially and are presented in Appendix C.

The second or final requirements set was defined after the,

initial application of the decomposition methodology and

are presented as Appendix G.



0, CHAPTER V
, t INTERDEP ENDENCY ASSEsSMENT METHODOLoGY.

The pgrpose of this chapter is to establish the guide"

lines that were used for the assessmeit of interdepentdencies

:between pairsof requirements. The assessment wasconducted

on a pair4wise-basis according to the following ,definitioh

of, interdependence.

Two requirements are termed interdependent of the

-design decisions made, with respect to one requirement con-

straint, or influence the definition of the second require-

ment. Thus, the interdependent relationship between two

requirements can be viewed in two ways:

SuPPortive: in. the sense that the two, requirements

are compatible; meeting one requirement will help

to satisfy the other as well.

Conflicting: the interdependency is such that some

trade-offs must be established-between the two

requirements in the later stages of the design

process.

The result of the assessment process is the decomposition

of the global system requirements into a numbe of sub-

problems, which ideally will be a collection of highly

dependent requirements.

5.1 interdependency Assessment Methodology

The methodology for interdependency assessment proposed

->
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j y Andreu onsiLsts, of a pair-Wise assessment of the, inter-

dependencies between requirements by the generation of

"conceptual models" within whose. context the assessmhent can

be made. The purpose of geherating a, conceptual model for

the assessment process is to have a specific mental frame-

work so that the-process is consistent and conceptually

rigorous. The following guidelines have been proposed by

Andreu, for the generation of conceptual models:

• Scan the requirements in Order- to- develop loose

conceptual models of the system.

* Supportive-requirements can be identified, by

visualizing a conceptual model in which apossible

* implementation would allow for common processing in

(. the final system in order to-meet the two require-

ments involved.

* Supportive requirements can be identified in cases

where two-distinct requirements call for similar

functions to be performed in different circumstances

in the finaideSign.

Conflicting requirements can be identified by:

searching for deadlocks

.. identifying when a given requirement imposes

limitations or constraints in other requirements.

identifying the need for "symmetric" processing;I<( that is,eadditional processing to meet a given

Srequirement is necessary.
1<( - r m. .., a y
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d.he procedure-of assessing all the interdepehdenCies

for, a 'aarge system canbecome burdensom. Therefore,

Andre, has propseAd a set of rocedural guidelines, 'based

on his experiences, which were-helpful in avoiding some of

the pitfalls of this time consuming process.

Establish an order for the assessment to be made.

. Write down conceptual models as they occur.

Avoid going, backwards to renew ;an assessment made

previously. Finish the assessment process anrd then

return.

I If the assessment of similar- equirements becomes

confusing changeto a different set.

• If no conceptual modeis are apparent skip the

assessment until one is available.

. If one feels uncertain or lacks confidence in the-

assessment process; stop, and come back to it later.

• A second assessment pass is useful, since it enables

one to employ new conceptual models and to review the

assessments'which have been previously established.

In addition to the guidelines established by Andreu the

following additional guidelines were identified.

In the case where the assessor's experience is lacking,

the results-of' the assessment process should be reviewed by

another interested third party in order to:

verify the conceptual model.

. . verify the nature of the interdependency.

. verify the resulting adjacency matrix
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U iii order to-6 define, a-,more. rigorous concd u1 oe

for the, asessment process, the fol-lowing assessment

template was i mposedupon each assessment:

1. Does the first requirement conflict with the

implementation of second requiremint, causing

deadlocks, symmetric processing, or imposing

limitations? For examper, the first requirement,

"System resources must be allocated to a, job prior

'to being allocated a processor". The user

resources (iie.., processor) are Allocated at the

user level, and the system resources are allocated

at job level, which requires symmetric processing.

2. Does the first requirement support the implementa-

tion of the second requirement by common processing:

or-do they call for similar functions to be per-

formed in different circumstances? For example,

the first requirement, "System resources- must be

allocated to a job prior to the job being made

eligible to run" is supported by "the supervisor

process must schedule jobs and prepare the jobsw for

execution". In this case, the supervisorprocess

controls the allocation of resources for-each job,

preparing them for-execution.

' 5.2 Summar'y

pair-wise interdependency assessment was conducted

7L



() accordinq 't-thIgidelines 1reiosl est~blishd,' frech,

requirement defined. Since an ihterdependency is syluetryc,

in, the sens that an interdependency between Lreqqreient #8
and, #0b.m lies an interdependency between #30 and ,8.

Therefore, eadch requirement was assesed. with the require-

ments that followed it. At the time of -assessment, an idi-

cation.. was made whether, the interdependency was supportive or

conf licting, and a brief statement of the, rationale 'for the

interdependency was made.

As: was the case for requirements defixition, the

Interdependency assessment process took ,place in two

iterations. The preliminary interdependency assessment is

presented in. Appendix D, and the final interdependency

- assessment is presented in Appendix H.

h
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:FIRST ITERATION OF -THE DESIGN PROBLEM

'The interdependencies, assessed between pairs-of require-

ments were formed into an adjacency matrix and input into

the software analysis package developed by Andreu. this

,chapter will present an analysis and discussion of the

resulting problem structure. The analysis and discussion

will consist of the following sections:

* An analysis of the resulting problem structure for

the first iteration.

• Discussion of the main subproblems.

• Discussion of the subproblems generated by a second

decomposition.

Relationships among- the main subproblems.,

. Motivation for a second iteration.

6.1 Analysis of Problem.Structures

A total of sixty-five requirements were input with the

software analysis package for decomposition. Appendix E

presents a copy of the output of the analysis and will be

frequently referred to during the analysis. The analysis

provided as follows:

First, the data, in the form of links (interdependen-

cies) between nodes (requirements) was verified by checking

that all assessed interdependencies were, in fact, present.

'This was accomplished using the "NOLK" command.
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Secondi' all isolated nodes,: those nodes with no

interconnecting links were identpfied. As a procedural

convenience, the initial graph was input with several extra

nodes. It is possible to deiete~nodes during the-analysis,

but no-new" nodes maybe added. Therefore, in order to

enter new nodes, one must redefine the entire graph. To

avid this time-consuming process, extra nodes were padded

into the graph, tnd the graph saved with the padded nodes.

A working copy of the graphwas generated by identifying and,

deleting isolated nodes and- then saving the temporary'

wkorking copy.

6.1.1 MAIN SUBPROBLEMS:
The adjacencymatrix was decomposed utilizing the[(9

steps outlined in section 2.3 and the. -results indluding .a

heirarchical.tree are presented in Appendix E. The design

requirements decomposed into six clusters or main sub-

problems (abbreviated at MS), of twenty to four members each.

The decomposition was generated- using the So-called

heirarchical clustering method -3,. the following evaluation

parameters resulted:

Strength: 1.9864

coupling: .8674

Measure: 1.1119

Strength was defined as a normalized evaluation of,

subset internal coherence; that is, how tightly coupled the

nodes in a given subgraph are. Coupling is defined as an

i

i -
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evaluation of the extent to which two, subgraphs are inter-

dependent. Measure equals strength minus c#upling The

evaluation parameters obtained are important in a relative

:sense, since there is no absolute value of any parameter

which indicates a good decomposition. A comparison Of

strength and coupling was made to make some statements ,of the

decomposition. A coupling/strength ratio - .43 was deter-

mined indicating that the coupling between subgraphs was

nearly-half the measure of internal coherence. This

indicates that, the subgraphs are internally coherent :(high

strength value) and still have a reasonable degree of

coupling. Whereas a small coupling value would indicate that

the subgraphs were relatively decoupled.

C" -In order.to further investigate the coupling evaluation

Andreu27  suggests a second decomposition in which each main

subproblem is treated as an entire graph and decomposed into

subproblems. Since the coupling parameter increases as

subproblems are defined, and strength remains constant, the

decomposition of the main subproblems into subproblems

decreases the overall partition measure. If the coupling

parameter1between main subproblems is low originally, the

main subproblems are fairly disjoint and a second decompo-

sition should be investigated. In the ideal case, a main

subproblem may exhibit such internal coherence (high

strength) that it 'does not decompose into subproblems. This

2?*4ndreu, "A systematic Aooroadh to the Design and Stru6-
F . turing of Complex Software Systems", p.277.
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a1mainsubprdbz wa considred' well-defined if no decom -
positionresulted. Theefore, a second -decompsoition of

each main subproblem -was performed; the results are presen ed

in, Appendix E.

6, 2.2 SEC6M, DECOOSIION STEP:

Each, main subproblem resulting from the original decom-

position, was individually- decomposed as follows:,

1. A separate graph was defined for each main sub-

problem by eliminating all nodes external to the MS

under analysis. This was-accomplished using the

"DEMO"' command. The nodes of the current are re-

-numbered,'at this point, which required rather

awkward collating schemes to keep the original set

of requirements synchronized withdeach new sub-

graph.

2,. Each MS-was decomposed according to the methodology

of section 2.3.

Of the six MS originally defined only two,-

MS 2' and MS 3 further decomposed.
I, .6.1.3 ANALIS METHODOLOGY..

6 inordeir to analyze the structure of the design #problem

implied by the decomposition technique, it is useful to

investigate the following entities:

,Elements: requirements contained within a given

subset.



External Interdependenies irnks that Ist aing

the elements of difierent subsets. The comiAnd.

jPRLK" was , useful in identifying the external links.

Re1kalingh the core set identification process, certain nodes

were identified. as seed nodes4 about which other nodes were

clustered. In order to identify the miaih focus of each

cluster, one examines the requirements involved in the.

largest number of interdependencies; i.e., the. node in an MS

with the largest number of links. It. is assumed that this

is the seed node for the MS and is, therefore, related to,

the main focus of that :MS. It is-also-noted that a given

main subprobiem may have several nodes with nearly the same

number of links which could be called equivalent seed nodes.

' ' A closer examination of these nodes iust. beundertaken to,

determine the nature of such a main subproblem.,

6.2 Main Subproblems

The problem structure resulting from the applicationof

thedecomposition methodology is-presented in Figure6.1.

The probiem structure was interpreted as composed oft he

main subproblems, depicted as blocks in Figure 6.1 and the
subproblems, generated by a second decomposition, depicted

as circles within the parent MS. The interdependencies

among the elements of different subproblems were generalized

into interfaces which are required in design between sub-

problems.
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U The interprtatidn of maln subprobems Shouid be

intuitive if the MS are well-ddfined. Since, each MS, was
buit arounda certain seed node, interpretation became a

problem of identifying the node and understanding how the

other member nodes were built arouhd it.

The more interesting part of the interpretation was to

identify the counter-intuitive or non-obvioUs results.

These results suggested'a structure of the design that was

not apparent at the outset or perhaps errors in the analysis.

In either case, it was the identification of non-intuitive

result& that representthe,value of the process.

The following discussion will highlight the general

and specific characteristics of the design structure

i indicated .by the decomposition methodology.

The decomposition methodology generated six main sub-

probiems-at the end of the first decomposition. The six

main subproblems have been generalized into the following

groups°:

1) Muiti-programming support functions

2) Process management functions,

3) Resource and memory management functions

4) Supervisor process functions

5) Device management functions

6) Message facility

The requirements statement are decomposed into these six

main :subproblems and are presented in Appendix k.K>



+~ 74 +

0 T 6h following discussion :will highliht. the, character.-

istics anid .discrepancies disdvered- in each main subproblem.

6+2.1 MULTI-PROGRA .ING SUPPORT' FUNCTIONS:

The .requirements which,decom sed into the. multi-

.programming support main subproblems were, all concerned-with

the features, and, facilities -,that must-be pr ovided, by, the,

operating system in a mu.ti-programming environment. These

features include:

a multi-programminhg environment .must exist

• job Scheduling,

. re-entrant and: pure code,

* supervisor proce14s support

-. synchroniZation techniques

-* protectioh among jobs,

The seed' node was requirement 5, "The operating system !must

provide for a multi-programming -environment".

However, it, must, be noted t hat requirement, 43,, "P-V+

mechanisms must .be ,provided", had a larger number of links"than requirement '5. The P-V mechanism prbvides the basic

imulti-p6grammuing suppokt,.b synchronizing operating System

functions, but it represents 'a specific tool rather than, a

'focus for the main subproblems. In addition,, the, P-V

mechanism is used for four ,distinct functions'. Therefore,

it was decided to further investigate this-requirement and

+attempt to .redefine, it;

Some of the requirements have a dual funtioh, and,

[%,• % '+



therefore, decomposed into this MS, which at first appearedi

,,qountr;- intuiive; for instance , the requirement, "Device-

handler routines must support multiple job streams from,

card readers". Intuitively, one would have expected this

requirement to fall squarely in the device management MS*.

However, the, issue is the requirement to. support multi-

programmingl by providing input from multiple job streams.

It is expected that such dual requirements will also have

interfaces linkages between the two MS in which they seem

to belong. This will be invstigated later.

This MS did n otdecompose upon the second dedomposition.

6.2.2 -PROCESS MANAGEMENT:

The smallest-computation entity defined by the operating

system is, the process:; therefore, the operating system must

recognize this feature and provide the necessary functions

for support of the process. The requirements which decom-

posed into this MS constitute the largest set of requirements

in a given MS 'and deal with 'those basic functions required

for process support. These features include:

. Process creation/destruction

Allocation/De-ailocation of a processor to a

process,

Time-slicing

Extended machine instruction environment

Process Scheduling

The seed node for the MS was requirement 6, "The operating



10' t systemk must be process -oriented", which is indeed the focus

-of, th'e MS

Requirement 44, "An interrupt handler must be provided-"

'had nearly the same number of linkages as requirement 6.

Time slicing (CPU usage, requiret s an interrupt handler;

however, this is not the only ifunction of the interrupt

handler. This requirement presented problems later in the

interface anaiysis. Therefore, it was decided to redefine

the requirement by separating it into-a number of distinct

interrupt handlers.

The decomposition included onecounter-intuitive

requirement.

"Message facility must be accessible to allprocesses."

It was expected that this requirement wotld decompose in the

message facility MS. Upon examination of the interdepen-

dency assessment and the conceptual models used for this

requirement, it was noted that the requirement is defined, as

being interrelated with three requirements in the MS and

only one in the message facility MS. The issue there is one

of process acessibility to the message facil.ty:- which iA

the primary means for interprocess, communication. Therefore,

this requirement related more closely to process support

than to the message facility.

This main subproblem decomposed into three subproblems

in the second decomposition.



0 6.2.3 'RSOURCE AND MEMORY ;MANAGEMENT FUNCTIONS:

This main subprdblem is, co mpsed of requirements which

deal with resource ailocactionin general, and- memory

management in particular,. The fuhctions concerning resource

allocated include:

Resources,are requested through the supervisor.

Information tables are utilized to monitor resource

i'liocatioh.

Operating system can dynamically allocate memory for

its own use.

The requirements dealing with memory management functions

2include:

. Operating system must allocate memory.

- The mechanisms by which memory is, allocated,

protected;i and reclaimed.

This main subproblem essentially has three nodes of similar

linkage value. The three requirements all deal in general

terms with resource and memory allocation, but no clear

definition is apparent. It can be argued that memory

mianagemn is a suseht of -the generai resource management,

function of the operating system. it is noted' that thisMS

has the largest number of interfacing linkages with other

-main subproblems. This was expected since the members of

the MS seem to cover-such a broad area of' responsibility.

This requirement decomposed into two subproblems in the

() second decomposition.
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6.2.4 SUPERVISOR PROCESS:

The requirements which decomposed into this main sub-i

problei,1all deal with the functions' of the supervisor

process, The supervisor process is that'process which
schedules jobs and prepares, them for execution. Many of-the

functions normally performed by the supervisor were

decomposed, into the :qiulti-pograming support main-sub-

problems, particularly the job scheduling -fnction. The

supervisor process is a subset of-the functions required for

multi-programming-supprt and, therefore, this result, seems

to make sense. It is also noted that there, are a large

number of linkages between the supervisor process .main

subproblem, and the multi-programming support module'.
riThe exi'stence of a. supervisor process module, di-stinct

from the multi-programming support module is considered a

significant insight into the problem-structure. The design

.problem structure dictates that both the supervisor process

and- multi-programming support main, subproblems are dis-

tinctly separate at the same level of comparison, and

F d~f e~j~l dign cocaceth-i

This module did not decompose on the second decomp0-.

sition.

6.2.5 DEVICE MANAGEMENT FUNCTIONS:

The members of this module clearly are concerned with

the functions required for device management. These

functions include:
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C .A device management routihe

'Devices and protocols- required to:suxpport mrultii-

The seed node fIr this main subproblem was requirement 36.

"The, operating -system must, supply a device management

routine." This main subproblem-decomposed very clearly;

that is,, it had the highest strength, value for all the main

iubproblems which did not decompOse on the second

decomposition.

6.2.,6 MESSAGE FACILITY:

Ail of, the requirements in "hthmodule directly, address

the needs. for, amessage facility, which is an interproc~ss

communication'technique in the Sample Operating Sysiem

which, enables user- processes to communicate and. synchronize

execution.

The seed node for this main subproblem was requirement

46. "A message facility has many requirements since there

are many features defined for use of the facility."

Although the message facility may seem to be- a relatively

l;eq important funjction of the -operating system, the decom-

position methodology implies that it constitutes a cOmplate

main subproblem. It may be that one may generate an entire

main subproblem just by defining a large number of require-

ments for a relatively insignificant feature; or conversely,

this facility may be of greater significanceto the-operating

system than previously anticipated.



Nuol ~~This ,module -did, not deqomposge in the, second' d~como-

siLtion,.

6.3 tubtiroblims Generated,4 -iiA Second Decomposition

A-.second ~decomposition was conducted, as-describdd in

* '~ciq 61 ndreuledin the decomposition- of ;MS 2 and

MS, 3' into' three and two6 subproblems respectively. The

term subproblem-4will be -used to describe the clusters 'which,

resulted. from a second decompbsition of the main subproblem.

4..1.1 MS ~2 - PROCESS MANAGEMENT FUNCTIONS,:-

MS. 2 decomposed'into three subproblems as fol'lows:

1) MS 2A - Subproblemn A: Process Creation and

Scheduling,

-Thi tubproblemh is designated MS ,2A. All of

the requirements in the subproblem were ~concerned

with process creation and schdling,. These,

functions included suich features as initial-process

creation, process identification, process blockage,

scheduling, and, message faci'lity accessibility.

2) MS 1B - Subproblem B:Process/Operating, system

Interface

This 'subproblem is' designated as 'MS 2B. All,

of terquirements, in this .subptoblem were con~cerned

with the extended machine instructions which are the

means by which processes communicate with the

( operating system.



C) 3) MS 2C - Subproblem: : Process Time-Slicing

This subproblem is designated MS, 2C. All of

the. requirements in this, subproblem are concerned

with process time-slicing, the process Scheduler's

role and the interrupt mechanism required to handle

timer interrupts. As pointed out previously, the

interrupt handler includes many more functions than

time interrupts. This caused some problems in

interfaces descovered in the later stages; there-

fore, it was decided to redefine this requirement

to explicitly define all of its functions.

6.3.2 MS 3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:

MS 3 decomposed into two subproblems as foiiowsl:

.... 1) MS 3A - Subproblem A: Resource Allocation

This subproblem is designated as MS 3A. This

subproblem was concerned with the allocation -of

resources in general, and the mechanism for memory

allocation in, particular. As before, this sub-

problem is not clearly defined since it concerns

both issues. First, the subproblem deals with some

broad issues of how resources are allocated, to

whom and when are they allocated. Second, the

subproblem deAls with the protocols for memory

allocation and de-allocation; specifically, only

the operating system may dynamically allocate

megory. it was decided to further investigage the



issueS of resource allocation, and memory ailocation,

in the next iteration to determine if the require-

ments or the conceptual models were ill-defined or

improperly assessed.

2) MS 3B - Subproblem B: Protection

This subproblem was designated MS 3B. This

subproblem is concerned with the protection mech-

anisms for'both-memory and user processes.

61.4 R2elationshipsAmongthe Main Subproblems

The relationships among the main subproblems are best

explained by examining the focus of each main subproblem

and the conceptual models used in the interdependency

assessment phase-which motivated the linkages. The software

package makes the linkages explicit through the "PRLK"

command the results arepresented in Appendix E.

The linkage between main subproblems were generalized

into interfaces between the main subproblems. The

following discussion will note the general characteristics

of these reiationships.

6.4.1 LINKAGES BETWEEN MS 1 MULTI-PROGRAMMING AND-MS 2

PROCESSMANAGEMENT FUNCTIONS:

1) MS 1 Multi-programming Support;

MS 2A Process Creation/Scheduling:

This interface between these two subproblems

consisted of the mechanisms for providing multi-



p programming by :process creation, blockage, and

synchroni:ation. Processes are created by the

sysItem and scheduled in a round-robin fashion to

achieve mut!i-programming of user's jobs.

2)" MS 1 Multi programming Support;

MS 2B Proces/Operating Syst6m Interface:

This interface between these two subproblems

was concerned with signaling processing completion

to the operating system, so that the next process

could begin.

3) MS 1 Multi-programming Support;

MS 2C Process Time-Slicing:

The interface between-these two subproblems
)  was concerned with-the mechanism of time-slicing

CPU usage to achieve muiti-programming. The

interrupt handler requirement was included in this

interface; when it seemed to belong more properly

in the MS 2B subproblem. This problemi-Ai~pported-

the need to re-examine the interrupt handler

requirement.

6.4.2 MS 1 MULTI-PROGRAMMING - MS 3 MEMORY MANAGEMENT

FUNCTIONS:

1) MS I MUlti-programming MS 3A Resource and

Memory Allocation

The interface between these two subproblemsw

was concerned with the medhanisms for user and
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AV). -alctof9 memory. Dyh 6, allocation dl

memry s restricted- to the, sy stem,,processes.

'The' interfA~ce between theseo two suibproblems.

was concerned with protection of. user jobs, and

memory. Thp interface, did' not deal with, the

mechanisms of. protection, bu~t the fact that pro-w

-tection. rnehanistms must exist to, support -multi!-

prograurling..

6". 43 MS UT-PROGRAMING - MS 4- SUPERVISOR PROCESS:,

The, interface, between these, two- subprobl.-ms was.

doncerned.with the mechanisms for the protection of user

jobs 'and: system-processes. Protection here is- defined-at

the job level controlled by the superVisr..

6.4.4 MS 1 MULTI-PROGRAMMING SUPPORT - MS 6DEVICE

MANAGEMENT:'

The interface -between these two subproblems is con-

tirned wit-h' the proceduara-l -medhanisms by, -which, devices

suiport multi-picograuuing; especially the existence of a

-device, handler, routine' and the dedication of' devices to, user

Jobs.

6.4.5, MS 2 IPAOCESS MANAGEN it MS 3 MMRY MANAGEMENT

FUNCTIOrNS:

1) MS- 2A Proc6ess Creation, a~id Sc'hedulIn4:;

M4S 3A Resouirce Allocation:

The interf ac --between these two subproblems
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was concefned with the use of information tables

to enable the operating :system to monitor prqcesses-

and resources. This interface explicitly points

out that since Processes and resources -must be

m¢nitored, the operating system should, attempt to

use the same mechanismto accompiish this task.

2) MS 2A Prodess Creation and Scheduling;

MS 3B Protection:

The interface between the subproblems is

concerned with identification of processesby

symbolic name for protection purposes.

3), MS 2B Process/Operating System Interface;

MS 3A Resource Allocation:

The interface between these two subproblems

was concerned with freeing memory upon completion

of a job.

4) MS 2B Process/Operating System Interface;

MS 3B Protection:

The interface between these two subproblems

was cOncened with the two state machine concept.

A process is required to run in the problem state,

all resource requests must pass through a super-

visor. Therefore, protection is afforded by

limiting the scope of system functions available

to the user.
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0 5) MS 2C 'Process Time-Slicing; MS 3B' Protection:

The interface between these two subproblems is
concerned with an interupt handler to deal with

unauthotized memory'access requests. This, inter-

face deemes distinctly out of place, until one

recalls that the requirement for all interrupt

handlers regardless of purpose, is located in MS 2C.

The lack of definition of. the- interrupt handler

has ,been a persistent problem; therefore, it was

redefined°..

6.4.6 MS, 2 PROCESS MANAGEMENT -MS 4 SUPERVISOR PROCESS:

I-) MS-2A Process Creation/Scheduling;,

MS 4 Supervisor Process:

Q) The interface between these two subproblems

was concernedwith the protocols for user process

creation. The supervisor process creates one

process per user, initially; all others.are

dynamically created by the user.

.2) MS 2B Process/perating System Interface;

MS 4 Supervisor Process:

The interface between these two subproblemTs

is concerned with the generation of an end-of-job

signal from the final .user process to the super-

visor.

3) MS 2C Process Tim-Slicing; MS 4 Supervisor Process:

The interface between these two subproblems



0i is concerned with the interrupt: handier which
terminates user pt Again, this is the

samepersistent problem of a poor interrupt handler
requirement, since time-runout is just one hof the

interrupts for which a handler is required.

6.4.7 MS 2 PROCESS MANAGEMENT - MS 5 MESSAGE-,FACILITY,:

1) MS 2A Process Creation and Scheduling;

MS -5Message Facilityo:

The interface between these twosubproblems is

concerned with the usage of a message facility b

user processes as a synchronization technique.

This enables user prqcesses to synchronize

processing by-starting and blocking each other

0 using messages.

2) MS 2B Process/Operating System- Interface;

MS s Message Facility:

The interface between these two subproblems

was concerned with the mechanisms fod message

generation by the user processes.

6.4.8 MS 2-PROCESS MANAGEMENT- MS 6 DEVICE MANAGEMENT:

MS 2C Process Time-Slicing;. MS 6 Device Management

The interface between these two subproblems

was concerned with the generation of an I/O inter-

rupt. Once againi this seems to be. misplaced

since the process time-Slicing function is in no

way concerned with I/O interrupt handling.



-88-

-O6.4.9 MS1 MEMORY MANAGEMENT FUNCTIONS" MS 4 SUPERVISOR

P-ROCES4;:,
1); MS 3A Resource, Allocation; MS, 4 ,Supervisor Process:

The interface between these two requirements-

deals with the issue of the timing, of resource

all6catin and, d'ae1location. The supervisor

process coordinates all resource a1location ,and

de-allocation for the operating 3ystem,-

2). MS 3B Protection; MS 4 Supervisor:

This interface is concerned with ,stablishing:

protocols for the user destruction, ofL user

processes only. The supervisor sets up a memory

partition and user' procdsses are restricted to

that-memory area; therefore, they may create and

destroy processes-only within that memory area.

6 41 MS 3 MEMORY MANAGEMENT - MS 5 MESSAGE FACILiTY:

MS 3A Resource Allocation; MS 5 Message Facility:

The interface between these two processes is

concerned with the queuing requirements for the

message facility. In order for the message

facility to enqueue itself, it must be able to

dynamically allocate a buffer area.

6.4.12 MS 3 MEMORY ALLOCATION MS 6 DEVICE MANAGEMENT:

MS 3A, Resource Allocation,; MS Z6' Device Management:

The interface between these two subproblems

is concerned with the use of job cohtrol language

I,
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s-ttements -and' information tabl-es to. specify .and'

monitor resource allocations.
.4A. 12 MS 4 SUPERAVISOR -PROCES. MS 6' DEVICE AN GEM~

The interface between these two subprblems is

concerned with the reclamation of device resources upon

completion of a, job., It is interesting, to note that alloca-

tion is not an issue, because that is controlled in MS 3,

Resource and Memory Allocation.

'6- 5Sdmmary-

The analys is of interfaces between subproblem is a,.

verification procedure which supports the initial main Sub-

problem analysis. Given two subproblems, the nature of the

interface could be intuitively derived based on Ie's

knowledge of the way in which various functions of the oper-

ating systemare supposed to, interface. An examination of

the links, which the decomposition methodology has implied,

verifies the expected result. In cases where the expected

result.was, not verified&, or if counter-intuitive interfaces

were implied, one could go back to the main subproblem and

find misplaced or ill-defined requirements. The second

iteration of the decomposition methodology focused on a re-

definition of problem requirements and a re-assessment of

interdependencies for the entire requirements set.

S (3
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0 CHAPTER VII

sECOND ITERATION: OF THE DESIGN- PROBLEM

The entire process of requirements definition and inter-
dependency assessment is very much alearning process. As

one continues to iterate-upon the process, the requirements

become more, well-def ined, and the assessment of interdepen-

dencies more consistent through the application of better

conceptual models. The second iteration is a cumulation of

a series of smaller iterations and reflects a flattening of

the learning curve.

The analysis, of the Ifirst iteration, of the design

problem highlighted a number of discrepencies in the

j resulting decomposition. The requirements which were

identified as being problematic-were re-e-xamined from the

perspective of their role in the Sample Operating System.

Where Warranted, these requirements were re-defined. At

this point, the entire requirements set was reviewed 'by two

graduate students familiar with operating systems in

general; namely, Sid Huff and Chat-Yu Lam. Based on their

analysis and reconmendations, certain requirements were

re-defined or re-written. The entire requirements set, in

its final form as contained in Appendix G, was subjected to

the interdependency assessment process. This chapter will

poiit out the changes made to the requirements set, and

present an analysis and discussioh of the resulting problem

structure. The chapter is otganized as follows:
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S.. Requirements re-definition.

An analysis of the-resuiting-problem structure for

the second iteration.

• Discussion of the main subproblems.

SDMiscussion of the subproblems generated by a second

decomposition.

Relationships among the main subproblems.

* Comparison of the first and second interations.

71Requiremients Definition

The following changes were made to the preliminary set

of requirements, AppendixC, based on the results of analysis

of the first iteration and examination by an interested third

-partY.

7.1. 1 PRELIMINARY REQUIREMENT 6:

"The operating system must be process oriented." This

requirement was considered to violate 'the guideline that all

requirements be defined at the same level of scope. This

requirement defines in very general terms, that there, are

certain basic functions that the operating system must

provide at a process level. The implications of this

requirement'have been made explicit in other requirements

which are defined at a level more consistent with the remain-

ing requirements set. Therefore, the requirement-Was changed

"> to a design philosophy and appears as requirement 3 in the

final requirements set.

S,''.--'-''
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0 71. FIALREQUI*REMEN'T' 6':
"Input/output devices are limited to card readers for

input job streams and line printers for output." /O

devices were limited'-by the designers of the -Sample Operating,

System to, card: readers and- printers. This was not made

explicit in the 'preliminarY requirements set and, therefore,

is included in the final requirements -set as a design

constraint."

7.1.3 PRELIMINARY REQUIREMENT i1:

"User communication- with the operating system Is: Via

SVC instruction." This requirement was considered to violate

the implementation independence guideline for requirement

definition. The. specification of "SVC instruction," con-

strains the viewpoint of the designer unnecessarily.

Therefore, the requirement was re-written and appears as

requirement 12 in the final sett "User communication with

the operating system ,is- via special call".

7.1A4 -PRELIMtJNARY REQUIREMENT 13:.

"The superviso- process must create and delete the

environment in which a job runs." This' requirement was

awkward and unclear. Therefore, it was re-written as

requirement 19 in the final set: "The supervisor process

must schedule jobs and prepare the job for execution".

7.1.5 PRELIMINARY REQUIREMENT 24:

"A process shall be blocked, and control released to

the traffic controller, when a timer runout trap is detected."
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established -r processes; yet, it does not explicitly- state

the time limit. Therefore, the requirement was re-written

making, the time limit explicit, and is presented as

requirement 25 of the final set: "A process must be blocked A

and, control released to the process scheduler When a time

quantum 'of 50 ms is exceeded".

7.1.,6 PRELIMINARY REQUIREMENT 23:;,

"The supervisor process must reclaimall system

resources, when an error condition abnormally terminates a

job." This requirement was unclear, since a user process is

created for each job. Also the user may create additional,

processes, any one of which may create an error which

C) terminates an entire job. Therefore, the requirement was

re-defined and is presented as requirement 29 in the final

set: "The supervisor process must reclaim all system

resources when an Qrror condition is raised by a process".

* 7.1;7 PRELIMINARY REQUIREMENT 41.

"InpUt/output devices toperate via multiplexor channel."

This requirement violates the implementation independence

guideline for requirement definition, and is in fact

redundant in the case where devicde are dedicated. The

requirement was, therefore, elminated.

7.1.8 PRELIMINARY REQUIREMENT 43 :

"The name of the ss.ding, process must be prefixed to a

message .'i This requirement violated the implementation

independence guideline for requiremen't definition, sizpce the
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reals~-is the fact that the :eeiving-process.must 'be

-able. to determine which process.sent the message.- Therefore,,

the requirement, was re-written -and Is presented as rejquire-

ment. 53 in, the final set: "The process receiving a-message

must be able to determine the or.iginator of, the. message

7.1.*9 'PRELIMNARY RQRMET43

"A. process synchronizat ion, mechanism must be provided."

-This requirement was-the source of' a -number of inconSisten-

cies in the first iteration of the zd3ign problem. ,Upon

closer examination, it was, determined that the ,process

synchronization, mechanism has a number of specific uses.

The, requirement was re-defined to clarify the'use of the

-process synchronization mechanism, and ,hopefully, reduce the

inconsistencies in thedesign, probiem. The requirement was

re-defined as follows:

Final Requirement 43

"Aprocess 'ynchronization, mechanism must be provided

to serve as a lock on a database."'

Final Re~uirement 44

""A process 1Synchronization mechanism must be provided

for thetiming of synchronization processes."

Final Requirement- 45

"A process synchrni zation mec' a nism,, rt:, 'be pkovided

for synchronization between the send and receiver in

message processing."
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"A Process synchronization mechanism must be providd

to lock a device.'

7. 1.X P RELIMINARY REQUIREMENT 44:

"An interrupt mechanism must be provided."' This

requirement was identified as being poorly defined and

leading to inconsistenciies in the first iteration of the

design problem. An inttrrup# handler' is provided by the,

op r n4 system' for a number of specific interrupt

-medhainisms_€ therefore, this requirement was re-defined to

explicitly define each oi the interrupt handlers as follows

Final Requirement 47

"An interrupt handler routine must be provided for I/O

interrupts."

Final Requirement 48

"An interrupt handler routine must be provided for

program interrupts."

Final Requirement 49

"An interrupt handler must be-provided for supervisor

call interrupts."

4 Final Requirement 50

"An interrupt handler must be provided to handle

external interrupts."

7.1.11

The following requirements were found to be missing

r ' from the original requirements set and, therefore, added:
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( O Final Requirement 71

"The I/O-interrupt handler routine must ?rovide for

a, synchronous !scheduling of a process requiring fast

processing."'

tPil Requirement 72

"The operating system must include a task Which loads

the 0/S into the computer and defines the processing

environment."

These changes were incorporated into the final requirements

set, and the interdependencies -between requirements-were

assessed. The next section presents an analysis of the

resulting problem structure after the application of the

decomposition methodology.

7.2 Analysis of the Resulting Problem Structure for the

Seconid Iteration

A total of seventy-two requirements were inpiut into the

software analysis package for decomposition. Appendix I

,contains a copy of the output of the decomposition and will

be referred to during the analysis. As before, the analysis,

proceeded in the following manner.

First, the input data was verified.

Second, all isolated nodes were identified. In this

decomposition, requirement 72, "The operating system must

include a non-system resident task which loads the O/S into

the computer and defines the processing environment" was
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U ientified, as, being isolated. Although-certainly a

consideration for :design, the initial program load routine

Is tailored to the final operating system design The IPL

rout'ine may ca1l routines provided by the operating system,

but the requirements for IPL are not usually considered in

the design of the Operating system. As before, all padded

nodes were deleted at the time.

Theadjacency matrix was decomposed according to the

procedure outlined in section 2.3 and the resultsi,,including

a heirarchical tree are .presented in Appendix i. The design

requirements decomposed into eight clusters or main sub-

problems. The heirarchical clustering method -3 was used to

generate the evaluation parameters. The evaluation para-

-meters resulting from the second iteration are presented

with those from the first iteration for comparisonr:

First Second
Iteration Iteration Change

Strength 1.9864 2.733 27% increase

Coupling .8674 1.32 34% increase

Measure 1.1119 1.411 20% increase

Coupling/
Strength .43 .48 10% increase

Average Main
Subproblem 10.16 8.125 25% decrease
Size

An examination of the evaluation parameters indicates that

all have increased from the first to second iteration, with

L the coupling parameter showing the largest increase.



-() Note also that the strength has incrdased:as well from

the first to the se-dond iteration. An increase inrstrength,

which is the normalized evaluation of subproblem internal

coherence, indicated that the main subproblems which have

been identified focus closely on the general subject of each

main subprobiem.

Thus, an increase in the, strength and. coupling para-

meters has resulted in an increased measure for the "good-

ness" of the main subproblem decompositions. This measure

is strictly relative ftom the first iteration to the-second

iteration. The real value of the second iteration lies in

,the increased understanding of the problemstructure which

is generalized by the decomposition methodology.

The remaining sections will analyze and describe the

resulting problem structure. The final section of the

chapter will preent a comparison of the similarities and

differences of -th- .design structure implied by the first

and second iterations.

7.3 lain Subproblems

The problem structure resulting from the application of

the ;decomposition methodology is presented in Figure 7.1.

The problem structure was interpreted as being composed of

the main subproblems depicted as blocks in Figure 7.1, the

subproblems, generated by a second decomposition, depicted

as circles within the parent main subproblem. The inter-
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dependencies among the elements of different subproblems

were generalized into interfaces which are ;required in the

desigp process between subproblems.

The eight main subproblems have been generalized into

the following groups:

1) Supervisor Process.

2) Extended Machine instructionMechanism.

3) Process Control'Functions.

4) Process Creation Functions.

5) Interprocess Communication.

6) Memory Allocation Functions.

7) Device Management Functions.

8) Process Synchronization -Function.(_
The requirement statements have been separated into these

eight main subproblems and are presented in Appendix J.

The following discussion will highlight the general and

specific characteristics of the design structure implied by

the decomposition methodology.

7.3.1 SUPERVISOR PROCESS:

The requirements which decomposed into the supervisor

process main subproblem were all concerned with the genera-

tion of a multi-programming environment through the

supervisor process. The supervisor process is that process

which prepares and schedules the user jobs for execution.

The supervisor process then consists of a number of specific

( tasks which must be performed for each job entering the
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sv tem. As contained in main subproblem 1, these tasks

. Resoirce allocationi: System resources must be a!lo;

cated to each job as it enters the system. -These,

resources consist of memory and devices.

Job scheduling.: the-supervisor schedules each job

for execution. This system uses a very simplified,

algorithm (first-come, first-sefved).

T Loading: the supervisor process must load each user

job into a.specific memory area.

Characteristics of the supervisor process: the

supervisor process must be modularized and a1 system

processes are written in re-entrant and shared :code.

This main subproblemhad the lowest individual strength

parameter for all the main subproblems, indicating that the

requirements are not exceptionally cohesive; or conversely

that the requirements in the main subproblem cover a wider

scope.

The main subproblem did not decompose on the second

decomposition.

7.3.2 EXTENDED MACHINE INSTRUCTION MECHANISM:

The requirements in this main subproblem are all

concerned with the extended machine instruction mechanism.

The description of the Sample Operating System in section

3.2 included a brief explanation of the purpose of the

extended machine instructions. Basically, the extended

machine instructions were provided to enable the user to
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C) performcertain resource management functions and hardware-

like instructions.

This, main subproblem contains tbe requirements which

deal with the. characteristics and protocols for the use of

the extended machine instructions.

This main subproblem did not decompose On the second

decomposition.

7.3.3" MS 3 PROCESS CONTROL FUNCTIONS:

The requirements in the subproblem are all concerned

with- the functions-necessary to control processes in the

operating system. Once created, a process may be "blocked"

or ready to run. When "ready to run", a process may be

"running" or "waiting". This main subproblem identifies the

states of blocked, running, or waiting, This main sub-

problem also identifies what conditions may change a process

state and how resource allocation is state-dependent.

The redefinition of the interrupt handler.requirement

is clearly apparent in this main subproblem. The control of

processes in the operating system is interrupt-driven; that

is, once a -process becomes eligible to run, its execution

is dependent upon a number of interrupts which are generated

in response to an asynchronous or a4 exceptional event in

* the program. This main subproblem' includes all of the

interrupt handler routines and, therefore, provides for the

control of processes.

The main subproblem contained two requirements which

did not seem to fit into the classification of process



Requirement 23

"Supervisor routine must reclaim all system resources

when a job is completedi"

Requirement 29

"Supervisor routine must reclaim all resources when an

error condition is raised."

These requirements seem to belong in the supervisor process

main subproblem. The supervisor process is initially

created, -one per input job stream. It -performs its func-

tions of resource ailoction, scheduiing, and loading as a

separate process. After all this has been done, the super-

visor process is no longer needed until thi user's job ends.

It stops running and waits for a message, "success" or

"failure", signalling completion to come from the user's

program.

According to this scheme, the supervisor is dependent

upon an interrupt signal generated by the user for successful

completion, or by the system in the way of an,error, to

restrict and reclaim all the resources of the current user.

Therefore, the mechanism by which the supervisor process is

signalled to restart is contained in the interrupt handler.

This is a case in which the implementation scheme of the

interrupt handler and supervisor process restart ought to be

considered simultaneously. When viewed from this perspec-

( tive, it makes sense that requirements 23 and 29 were

decomposed into main subproblem 3.
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his, main subproblem decomposed into three subproblemd-

during- the, second decomposition,.

7.i. 4 MS 4, PRbtESS CETIN

The requirements in, this main, subproblem were all

-coi~cerned with the protocols for process creation. Init"aily

the operating system creates a single process for each user's

job. The-user may then create additional processes. dynami-

cal;y during execution. Naturally the system imposes' certain

constraints and procedures upon the dynamic creation of -

processes. These constraints and procedures are the focus

of this main subproblem and deal with:i

..When the user may create additional processes?

. How or by what mechanisms may these processes by

created?

How are user processes identified?

* What restrictions are imposed upon dynamically

created processes?

It is noted that dynamic creation of user processes is one

of the main functions necessary for multi-programming since

the processes are time-sliced for CPU usage.

This main subproblem did not decompose any further.

73.5 MS 5 INTERPROCESS COMMUNICATION:

The requirements in this main subproblem were concerned

with the tables and features provided by the operating

system for interprocess communication. The main mechanism

for interprocess communication has been previously identified



as the message tacility. This main subproblem contains all

the requirements for the message facility as well as' the

requirements fIr system tables required to monitor and

control processing. These two groups of requirements have

been generalized under the heading of interprocess commUni-

cation since the operating system communicates internally

with information tables and user processes communicate via

the message facility.

This main subproblem had the highest strength parameter

of all. main subproblems, indicating that this main sub-

problem 'had the greatest internal cohesiveness among require-

ments,. This main subproblem decomposed into two well-

defined subproblems in- the second decomposition.

7.3.6 MS 6 MEMORY ALLOCATION FUNCTIONS:

The requirements in this'main subproblem were all

concerned with the protocols for memory allocation within

the Sample Operating System. This main subproblem

represents a distinct change from the first iteration in

whichnumerous resource allocation procedures were also

contained in this main subproblem. The second iteration has

resulted in a veiy well-defined main subproblem; its

strength parameter was the second ,highest, which did not

'decompose upon the second decomposition.

7.3.7 DEVICE MANAGEMENT FUNCTIONS:

The requirements in the main subproblem were all

concerned with the functions required for device management.
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This ma n Subproblem'was viktually unchanged from the

previous iteration.

The main subproblem contains the requirements which

deal with the following issues:

. The existence and functions of a device management

system.

Procedures for requesting resources and i/O by the

user.

This main subproblem did not decompose upon the second

decomposition.

7.3.8 PROCESS SYNCHRONIZATION FUNCTIONS:

The requirements in the main subproblem are specifi-

cally concerned with the process synchronization mechanism

K provided by the Sample Operating System. This main sub-

problem resulted from the redefinititn of the global process

syn6hronization requirement contained in the first iteration

of the decomposition process. The requirements were re-

defined and analyzed independently from each other. The

process synchronization mechanism is used extensively

throughout the Sample Operating System to provide a linked

list for the sequential locking of resources.

The existence of a main subproblem dealing exclusively

with the process synchronization mechanism indicates that

the implementation of this mechanism warrants the equiva-

lent amount of design consideration given to the other main

subproblems.



i'0"

k.. Tisman ubroblem-did not d'combose anY, further. ""

7.4 Stibproblemfs-,Generated',by ai Second Dec.omposition

A second' decomiposition, was conductd&. as, described in.N

section 7T.2', and -esulted in the decomposition of MS 3 and

MS:5 into' three .and two subprcobiems kespetivey-. The

follo6wing, discuss-ion- will describe the resulting sub-

problems.

7..XMS 3-PROCESS CONTROL FUNCTIONS:

-MS 3 decomposed into three subproblems as follows:

1) MS 3A Process Scheduling:

All of, the r~quirements in this subproblem were

-conceeted with the procedures necessary to schedule,

'a process.- in 'the Sample- Operatinq, System. This

and. S6heduihqg,. e:cciept, that the functions -o.6

process ceation. have- now. been JseparateA i nt~ an

entire- -main subproblem.

2-) MS 3Be'System- lhitia-t-d Intdr rupts:_

ifIThe re u).refents in this- subprobldfti define the

types of interrupts that are system-generated to

control-,,rocesslig. These' interrupts are centered N

around- the time-slicin4 of CPU-usage to achieve

muti-porm g 'The systeu may also supl

interrupt handler -uthe for supervisor calls
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3-) MS 3C Process 'nitiated' Interrupts:

Inocontrast to MS 3B, the requirements of this

subproblem are concerned with the means by which

user processes may signal the operating system via

interipts to control piocessing. 'Theuser process

must signai completion tothe 6perating system so

that resources may bs reclaimed and other ,processes

scheduled. Therefore, the subproblem is primarily

concerned with user signalling completion tO the

operating system. As previously pointed out ih

section 7.3.3, this subproblem also contains the

requirements that the superVisor process be

restricted upon completion of the user's job.

7.4.2 MAIN SUBPROBLEM 5: INTERPROCESS COMMUNICATION:

MS 5 decomposed into two subproblems as follows,:

1) MS 5A Operating System Information Tables:

The requirements in this subproblem afe

concerned with the operating system's use of infor-

mation tables to monitor and control processing.

The requirements deal with the existence of such

tables and the fact that the tables must be

dynamically allocated and released by the operating

system.

2) MS 5B Message Facility:

The requirements of this subproblem are

concerned with the existence of a m!essage facility
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for user process communication. ,The-message

-facility is the primary means of user process

'communicationand, likbe information tables, must, be

a dynamically al.ocated table to enable queuing of

messages. The requirements deal with the pro-

cedures and constraints for sending and receiving,

messages.

7.5 Relationships Among the Main, Subproblems,

The relationships among the main subproblems were

investigated as previously explained in sedtion 6.4. The

linkages between main subproblems were generalized into inter-

faces between the main subproblems. it is noted that the

second iteration resulted in a large number df'main sub-

problems and a larger coupling parameter. Therefore, the

number of linkages between main subproblems was expected to

be much greater than in the first iteration. A comparison

was made of those subproblems actually having linkages in

the first ad second iteration.

First Iteration Second Iteration

Average number of
linkages between 3.52 links 2.52 links
subproblems for
which linkages
exist subproblem subproblem

Number of existing
linkages 27 36

Although the number of subproblems having linkages is

greater in the second iteration (36 vs. 27), the average
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ntumber of linkages between subproblems is more than a third

less. This indicates that the interface between two given

subproblems may be more highly defined since the linkages.,

will focus, on a fewer number of issues-., The following

discussion will attempt to make the definition of interfaces-

between subproblems. more explicit.

7,.5.1 LINKAGES BETWEEN- MS- 1 SUPERVISOR 'PROCESS AND

MS 2 EXTENDED MACHINE INSTRUCTION MECHANISMS:

The interface between these, two subproblems is formed

due to the use of aspecial call instruction to request

resources from the- supervisor.

7.5,.2 MS 1 SUPERVISOR-PROCESS AND MS 3 PROCESS CONTROLu

FUiNCTIONS:

MS 1 and MS 3A. Process Scheduling:

The interfaces between these two subproblems con-

sists of conflicting implementation. First, the memory

and :device resources are allocated on a job level by

the supervisor. The processor is assigned'on a process

level only when a process is runnable. Second, jobs

are scheduled strictly first-come, first-served, but

there is an 1/O fas't processing;,scheme that enables

asynchronous scheduling of a process requiring frequent

update.

4 MS 1 and MS 3C Process Initiated Interrupts.:

The interface between these two sub ;oblems consists

of the mechanism by- wh'ich the superviioir process is re-



started after a user job terminates. MS 3C containd

the seemingly -misplaced requirements that the super-

visor must reclaim- resources -when a job terminates.

-This interface makes the-association between the

supervisor process and user initiated job termination

explicit, and Verifies the decomposition of subproblem

MS 3C.

'7.5.3 MS 1 SUPERVISOR -PROCESS AND MS 4 PROCESS CREATION-

FUNCTIONS:

The interface between these: two- subproblems consists of

the protection mechanisms employed by the supervisor process

to insure that jobs are isolated from each other. The

mechanism is the creation of a single user process initially
for each job, which runs exclusively in the user's partition.

7.5.4 MS 1 SUPERVISOR PROCESS AND MS 5 INTERPROCESS

COMMUNICATION:

MS 1 and MS 5A Operating System Information Tables

This interface between these two subproblems deals

with the act that the supervisor process must utilize

information tables to determine what resources are free or

in use to support multi-programming.

7.5.5 MS 1 SUPERVISOR PROCESS AND MS 6 MEMORY ALLOCATION:

The interface between these two subproblems obviously

concerns the fact that memory is a resource which must be

allocated by the supervisor process.

7.5.6 MS 1 SUPERVISOR PROCESS AND MS 7 DEVICE MANAGEMENT:

The interface between these two subproblems is of a
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dual nature. First the device handler routine directly

supports multimprogrammzing4 by providing multiple job stream§s

from multiple sources to the system. Second, devices are

resources which must be allocated to jobs by the supervisor

process.

7.5.7 MS 1 SUPERVISOR PROCESS AND MS 8 PROCESS

SYNCHRONIZATION:

The interface between these two subproblems is formed

when the supervisor process uses process synchronization

m~chanism as a lock fcr resource allocation.

7.5.8 MS 2 EXTENDED INSTRUCTION MECHANISM AND MS 3 PROCESS

CONTROL FUNCTIONS:'

MS 2 and MS 3B.System Initiated Interrupts

(\ The interface between these two subproblems concerns

the fact that the use of extended machine instructions

generates a supervisor call interrupt. A handler

routine must -be provided which interprets the interrupt

and performs the intended instruction.

MS 2 and MS 3C Process Initiated Interrupts

The user signals process completion by a special

extended machine instruction which is the interface

between these two subproblems.

7.5.9 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 4 PROCESS CREATION FUNCTIONS:

The processes-are restricted in their use of extended

machine instructions; therefore, this interface is concerned
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0 with, the fact that dynamically created processes run in the

problem SItat e while extended machine instructions-are

executed in the supervisor state.

7.5.10 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 5 INTERPROCESS'COMMUNICATION:

MS 2 and MS 5B Message Facility

The message facility is available to all processes

via extended machine instructions. The interface is con-

cerned with the use of extended machine instructions in in4

;support of the-message facility.

7.5.11 MS 2' EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 8 PROCESS SYNCHRONIZATION:

The interface between these two subproblems is concerned

with the protocols for use of the process synchronization

mechanism. The synchronization mechanism is available via

extended machine instruction; but since it serves to lock

resources, it is restricted and cannot be called by user

processes.

7.5.12 MS 3 PROCESS CONTROL FUNCTIONS:

MS 3A Process Scheduling and MS 4 Process Creation

Functions

The interface between these two subproblems is

concerned with the scheduling of dynamically created

user processes. Since the scheduling is strictly

round-robin, a dynamically created process is scheduled

upon creation.



MS. 3A and MS 5 Interprocess Communicationh/

MS 3A and MS 5A operating System Information Tables.

The interface between these two subproblems is

concerned with the fact that ready process control

blocks may be chained together to facilitate round-

robin scheduling.

MS 3A and MS 5B Message Facility

The interface between these two subproblems is

concerned with use of the message facility as a means

of-providing- process synchronization-.

MS 3A and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with- the use, by the operating system, of

the process synchronization-mechanism to schedule or

synchronize its own system processes.

MS 3B 'System Initiated Interrupts and MS 7 Device

Management Functions

The interface between theke subproblems is the I/O

interrupt handler. The user process must request I/O

through the operating system and the I/O interrupt

handler is provided to service the user's request.

MS 3C Process Initiated Interrupts and MS SB Message

Facility

The interface between these two sxiproblems is

concerned with the fact that when a process signals

completion, all messages waiting to be read by that

process are destroyed.
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U MS 3C and Ms 6Memory Aidcation Functions

The interface between these two subproblems is

concerned with memory reclaimation once the user job

has completed.

MS 3C and MS 7 Device Management Functions

The interface between these tWo subproblems is

concerned with the fact that the device handler routine

must be terminated when a jqb is terminated.

MS 3C and MS '8 Process Synchronization

The interface between these two subproblems is

concerned with the fact that all locks set by the

operating system in consideration of a particular job

must be released when that job terminates.

7.5.13 MS 4 PROCESS CREATION FUNCTIONS AND MS 5 INTER-

PROCESS COMMUNICATION FUNCTIONS:

MS 4 and MS SA Operating System Information Tables

The interface between these two subproblems is

concerned-with protection mechanisms employed by the

operating system to protect dynamically created

processes. The operating system utilizes information

stored in tables to protect user processes.

MS 4 and MS 5B Message Facility

The interface between these two subproblems consists

of the identification of user processes so that message

originators and destinations may be defined.
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0 7.5.14 MS 5 INTERPROCES3 COMICATION AND MS 6 MEMORYI 'PLOCAt'ION:i
MS 5A Operating, System. Information Tables and MS',6,

Memory Allocation

The interface between these two subproblems is

concerned with the use of information tables to allo-

cate memory, Memory allocation is heavily dependent

upon information tables to identify free. areas and to

enforce protection rights for certain memory areas.,

MS 5A and MS 71 Device Management Functions

The interface between these two subproblems is

concerned with device management functions which require

dynamic system tables to monitor .and control the allo-

cation of device resources.

MS 5A and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the extensive use of process synchroni-

zation mechanism with a semaphore to serve as a lock

on a database. The counting semaphore may be used as

a prioritized list-of processes waiting for a particular

resource.

MS 5B Message Facility and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the use of the process synchronization

mechanism to establish an ordered queue for the message

facility.
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S7. 5.16 MS' 6 MEMORY ALLOCATION FUNCTIONS AND-MS 7 DEVICE'

MANAGEMENT:

Thdinterface between these two zubproblems is con-

cerned'with the use of job control language statements to

specify memory resource requirements. The JCL statement

requirement is decomposed into MS '7; therefore, all resource

requests must interface ,with MS 7 to specify the desired

resources.

7.5.17 MS 6 MEMORY ALLOCATION FUNCTIONS AND MS 8-PROCESS

SYNCHRONIZATION:

The interface between these two subproblems is

concerned with the use of the process synchronization

mechanism to serve as a lock on system tables to prevent

unauthorized access or modification.

7-.5.18 .S 7 DEVICE MANAGEMENT AND MS 8 PROCESS

SYCERoNIZATION MECHANISM:

The interface between these two subproblems is concerned

with the use of the process synchronization mechanism to lock

devices in the device management function.

7.5.19 SUMMARY:

An investigation of the interfaces between pairs of

subproblems identified the most obvious relationships among

the main subproblems. In/one case, described in section

7.5.-2, the examination of interfaces has verified a seemingly

misplaced decomposition of requirements. The number of

interfaces among subproblems has decreased significantly in
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Q the secoid iteration, resulting in, iterfaces which are more

' clearly dfined.

The fina. section of this 6hapter will compare t he

Or bl'em, structures which were, implied by the first and second

iterations of the decomposition methodology.

7.6 Comparison of thezDesign Structure Implied by the First

and Second Iterations

The method for analyzing the similarities and: differ-

ences in the design 6tructure implied by the first and second

iterations Of the decomposition methodology was to compare.i' the subproblems which resulted from each iteration. Each

iteration was analyzed in isolation from the other; there-

fore, the title of each subproblem will not reveal any more

than a general similarity. The comparison must include an

analysis of the functions or issues involved in each sub-

problem to determine how the nature of each subproblem has

changed from the first iteration to the second.

The first iteration resulted in the decomposition of

sixty-five requirements into six main subproblems. Two of

the main subproblems decomposed a. second time into two and

three subproblems. Therefore, the first iteration resulted-

in a total of nine distinct subproblems for comparison. The

second iteration likewise originally resulted in a decompo-

sition of eight main subproblems, again two of which-further

decomposed into two and three subproblems. Therefore, the

-
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seconhd iteration- resulted in eeven ,distinct subproblems for

comparisonl.

7.6.1 GENERAL FUNCTIONAL 'COMPARISON:.

The: generai l function- of each subproblem was investigated

from the. first iteration and compared to the function of the

subproblem resulting, from- the second iteration. A pair-wise a

subproblem comparison was suggested of the fol1owing form:

Subproblems From Subproblems From
First Iteration Second Iteration

1. Supervisor Process 1.. Supervisor Process

2. Device Management 2. DeVice Management

Functions Functions

3. Message Facility 3. Message Facility

4. Resource and Memory 4. Operating System Information
( Management Tables

5. Process Creation and 5. Memory ' Allocation Functions
Scheduling

6. Process/Operating 6. Process Creation
System Interface

7. Process Time-Slicing 7. Process Scheduling

8. Multi-programming 8. Extended Machine Instruc-
Support Functions tion Mechanism

9. System Initiated Intererupt

10. Process Synchronization
Mechanism

ii. User Initiated Interrupts

7.6.2 COMPARISON OF SPECIFIC SUBPROBLEM FUNCTIONS:

Supervisor Process: Both iterations identified the need

for a supervisor process, which prepares and schedules jobs
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for execution. The supervisor process in the second

iteration is- more well-defined since it incorporates many

of the requirements which previously had been decmposed

into the multi-programming support subproblem. The require-

ments which shifted deal specifically with the functions of

the supervisor process in the support of multi-pr6gramming.

Device management functions: The subproblems generated

for the device management functions were nearly identical

for the first and second iterations. The subproblem

resulting from the second iteration included the requirement

for job control language statements. In the previous

iteration this requirement had been contained in th4e resource

and memory allocationfunction subproblem.

Message facility subproblems: The subproblems generated

for the message facility were identical from the first to

the second iteration. However, in the first iteration the

message facility constituted an.entire main subproblem;

whereas in the second iteration, it was a subproblem

g~nerated after a second decomposition.

Resource and memory management functions and operating

system- information tables and memory allocation functions:.

the first iteration of the design requirements generated

a main subproblem which was concerned with the allocation of

resources and specifically memory by the operating system.

This main subproblem was better defined in the second

iteration; in that two subproblems were generated which
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sepAratied-the M~ndtioni of the mprevious main subproblem.

Memory allocation subproblem, in the second iteration, is

specifically concerned with these requirements for memory.

( The operating system: information tables subproblem deals,

with the protocols and, information requirements which had

been associated with: the geheral resource management

functions of the first iteration. In addition, the mechanics

of resource 'allocation were decomposed into the supervisor

process subproblem of the second iteration which has resulted

in-more well-defined subproblems.

Process creation and scheduling functions and process

creation and process scheduling functions: The single sub-

problem, Process Creation and Scheduling Functions, of the

i .first iteration, was decomposed into one main subproblem,

Process Creation and one subproblem, Process Scheduling

Functions in the second iteration. The requirements

involved, in both iterations are identical. The functional !
separation achieved in the second iteration has resulted in

more clearly defined subproblems.

Process/operating system interface and extended machine

[ instruction mechanism: The requirements contained in each

of these two subproblems are nearly identical from the

first to the second iteration. However, in the first

iteration, the process/operating system interface was a sub-

problem; whereas in the second iteration, the extended

machine instruction mechanisms constituted an entire main

subproblem.
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Process timei-slicinig and s-ystem initiated, initerruots:

The requirements for process time-slicing decomposed in the

-first iteration into a single subproblem entitled "Process

time-slicing". In the second iteration, the definition of

the interrupt handler requireneht had beezh considerably

expanded., One result was the definition of a subproblem

dealing with system initiated interrupts. The main focus of

system initiated interrupt handler was with time runout

however, it also included the requirements external and I/O

interrupt handler routines as well.

Multi-programming support functions and process sychron-

izationmechanism: The multi-programming support function

main subproblem, generated in the first iteration was

eliminated in the second iteration, being replaced by the

process synchronization mechanism main subproblem'. The

multi-programming support functions included many functions

which belong to the supervisor process. In fact, it was

previously argued that the supervisor process main subproblem

could have been considered a subset of the multi-programming

main subproblem. In the second iteration, all of the

requirements representing supervisor process functions have

been decomposed into that main subproblem.

The process synchronization mechanism requirement was

re-defined from the first to the second iteration. Since

this mechanism provides basic multi-programming support, it
- -had decomposed into the multi-programming support main sub-Ki
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problem-in the first iteration. After the redefinition in

the, second ieration, the process §ynchronization mechanism

had, decomposed'into a distinct and separate main subproblem,.

,User initiated interrupts: The redefinition of the

interrupt handler routine requirements from the first to

the second iteration resulted in the decomposition of a sub-

problem dealing with user initiated interrupt handler. Since

the main focus of this subproblem involves the user signaling

completion of a job, it had no similar subproblem counter-

part from the first iteration.

7.7 Summary

The comparison of the problem structure implied by the

(. first and second iterations yields the following results:

The second decomposition resulted in a greater number

of subproblems.

* The subproblems resulting from the second decomposi-

tion were more weil-defined than those resulting from

the first iteration.

The changes in subproblems from the first iteration to

the second were inituitive and seemed to result in a

better problem structure.

The interfaces between subproblems in the second iter-

ation were also more clearly defined.

The next chapter will analyze the implications of the second

iteration problem structure on the design of the Sample

Operating System.
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( CHAPTER VIII

IMPLICATIONS OF THE DECOMPOSITION PROCESS

FOR THE DESIGN OF THE SAMPLE OPERATING SYSTEM

The motivation for applying the decomposition method-

ology was to generate a framework upon the design require-

,ments of the Sample Operating System to-provide insight and

understanding of the relationships-among the system

requirements. The framework resulted in the identification

of subproblems of system requirements and the establishment

of relationships between pairs of subproblems. The frame-

work then constitutes a better basis for' the subsequent

detailed design stagei than the original disjoint set of

-requirements. Better in the sense that a design team now

has a framework; i.e., design subproblems, in which

alternative implementation schemes maybe thoroughly

investigated.

The prupose of this chapter is to examine the subi

problems, which resulted from the second iteration of the

decomposition methodology, from the perspective of the

completed Sample Operating System to determine if the.

1 -completed design is verified by the results of the decompo-

sition methodology. The verification procedure was first

to determine if the Sample Operating System was designed in

a manner consistent with the intuitive results of the

decomposition methodology by a comparison of the specific

jfunctions identified for the heirarchically structured Sample



C Operatig System with the funcions tgeneralized for each,

ubptoblem by the decompositioni methodology. The procedure

attempted to determine if the decomposition methodology

indeed provided, a framework for design; yet was sufficiently

unconstraining, so th-it a designer was free to investigate

alternative implementations and Still arrive at the final

Sample Operating System design as it. exists.

Since thedesign process for the Sample Operating

System is not documented in a manner that would elucidate

the decisions made by the designers in the early stages of

the design process, a description of the final system was,

therefore, used extensively as the only documentation aid

for the system.

The second part of the verification procedure was to

identify inconsistencies, non-intuitive design features,, or

contentions that were made obvious through the application

of the decomposition methodology.

8'.i Design Overview of the SampleOperating System

The description of the Sample Operating System by

Madnick and Donovan included a design overview, which closely

represented the major design decisions. The design overview

is presented to highlight both the. design philosophy and the

intent of the system designers.

"The design of the Sample Operating System follows

closely the framework presented in (Fig. 8.1).28
28Madnick and Donovan, p.19.
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C) "We buildour concept of an operating system around

a proces We- recognize that there are certain

requirements: necessary to support processes. A process

in the proper environment could call certain basic

functions. Unfortunately, most present-day hardware,

does not provide these basic functions."-

"Thus, our first design task is to build basic

functions (extended machine for process support). These

comprise the nucleus or Kernel of the operating system.

Examples of these basic functions are the P-V operations, -

basic multiprocessing support, and traffic contr6lling.

The reader can think of these software functions as

being executed in the same way as hardware instructions.

"It is best to thinkof the Kernel as being an

extended machine that consists of a number of extended

instructions. In this implementation, the extended

-instructions are accomplished, by means of the supervisor

call instruction .....

"....Certain operating system functions can be

provided in the form of special System processes rather

than -system primitives. In this sample operating

system, there ar3 several such processes, including the

: supervisor processes (job stream handlea s ) and the
device handler processes ........ The hierarchical

construction of the Kernel is such that each successive

level, from the bottom up, depends only on the



128

existenceof those, levels below it, and not on those

above it. This approach has the advantage of pedago-

gical ,clarity, offers debugging ease, and' may be

relevant to the development of new theory. ,,29

From Figure 8.1 one may discern five levels and layers (or

modules) of the Sample Operating System.

process Management, lower module (lowest)

Levels IMemory Management Module
Lprocess Management, upper module

aDevice Management Module
L Supervisor Process Module (highest)

The functions of process management have been split

into a lower moduie and an upper module because certain

functions of process management (upper module) depend upon

memory management functions, but memory management itself

depends on certain processimanagement routines that must be

in a module below memory management. Clearly this step

increases the pedagogical clarity of operating 6ystem. It,

is also noted that the Sample Operating System has no

.spoo~ing process nor information management (file) system.

An examination was conducted of the functions of each

level and layer in the heirarchical operating system

structure of the Sample Operating System to determine if

they correspond to the functions- of the subproblems identi-

fied in the decomposition methodology.
29Madnick and Donovan, pp.383-355.
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C 8.2 Functional 'Comparison of the-Levels and Layers of the
Sample Operating System with the .Subproblems Generated

By the DecomPosition Methodology

8.2.1 PROCESS MANAGEMENT (LOWER) MODULE COMPARED WITH

PROCESS CONTROL ND-PROCESS SYNCHRONIZATION MECHANISM

SUBPROBLEMS:

The functional description of the process management

(lower) module is as follows:

The module schedules and runs processes that are

eligible to run and provides the basic primitives for

synchronization of processes.

These functiofis are wholly contained in the twomain sub-

-problems of Pro6ess Control and Process Synchronization

mechanism. The process control main subproblem as described

in section 7.3.3 is concerned'with the functions necessary

to control all processes in the operating system. This

main subproblem decomposed into three subproblems; specifi-

cally, processscheduling, system initiated interrupt

handler, and user initiated interrupt handler. The process

scheduler is concerned with the procedure for scheduling

eligible processes and corresponds to the process scheduler

of the Sample Operating System. The system and user

initiated interrupt handlers define the functions necessary

for process multiplexing 'by the operating system and the

user. These functions essentially distinguish between

eligible and ineligible processes.
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The second main subproblem included: in the comparison

is the process synchronization mechanism. As described*, in

section 7.3.8 this main subproblem, is concerned with the

specific function of the synchronization mechanism and

directly corresponds with the "basic primitives for synchro-

nization of processes described in the process management

,(lower) module-of the Sample Operating System.

8.2.2 MEMORY MANAGEMENT MODULECOMPARED WITH THE MEMORY

ALLOCATION MAIN SUBPROBLEM AND OPERATING SYSTEM

INFORMATION TABLES SUBPROBLEM:

The functional description of the memory management

module is as follows:

This module performs the operations necessary for'

the dynamic allocation and freeing of memory for,

a) job allocation.

b) operating, system dynamic allocation.

The allocation functions defined for job and system needs

correspond to the functions described in the memory

allocation main subproblem and operating system information

table subproblem as described in section 7.3.6 was concerned

with the protocols for memory allocation and directly

correspond to the functional description of the memory

management module for job partitions.

The operating system information table subproblem was

decomposed from the interprocess communication main subprob-

lem. As described in section 7.4.2 this subproblem is

L
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concerned with the use of -'information tables to monitor and

control processing and corresponds to the memory management

module allocation functions for memory for operating system

dynamic allocation. It is 'noted that the decomposition

methodology defined the functions of operating system

dynamic allocation of memory for information tables ass a

subproblem of interprocess communication; whereas the

designers of the Sample Operating System treated the func-

tions as a subproblem of memory management. The conceptual

distinction is as follows:

a) Decomposition of the information table requirements

as a subproblem of interprocess communication

resulted from an assessment of "What" was the

function of information table? The furtion is,

of course, to monitor and control processing by

communicating the status of resources thru tables
shared among the processes of the operating system.

b) The treatment of the dynamic allocation of memory

for informaticn .tables (operating system dynamic

allocation) resulted from an assessment of how is

the information table requirement to be implemented?

Since the function requires a significant amount of

memory allocation, it was considered a subproblem

of the memory management module.

The interdependencies among requirements were assessed

in an implementation independent environment. The applica-

I i
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C) ti n of the decomposition methodology, a framework (ie.,

subproblems) in which alternative implementation schemes

maybe thoroughly investiaged'. For the final design, the,

information table subproblem was combined with the memory

allocation subproblem to form the memory management module

of theSample Operating, System.

This compariSon raised the following issue:

If a main subproblern decomposes upon the second

decomposition should one assess the main subproblem as com-

posed of several subproblems or should one assess the

subproblems as independent design problems at the same

level as main subproblems?

The purpose of decomposition methodology is to provide

a framework of subproblems in which the designer is free to

optimize the subproblem by investigating alternative

implementation schemes. The framework is meant to provide

a structure for the designer, but not to impose additional

constraints upon the designer's freedom. Since the assess-

ment of subproblems as independent design problems offered

more flexibility to the designer, one should, therefore,

assess subproblems resulting from a second decomposition at

the same level as main subproblems. In terms of the

previous-comparison, treating the operating system informa-

tion table subproblem within the structure of the inter-

process communication main subproblem would have added a

constraint upon the system designer.
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f8ll2.3 PROCESS MANAGEMENT (UPPER)' MQDULE, COMPARED WITH, THE

PROCESS CREATION SUBPROBLEM AND THE MESSAGE FACILITY

SUBPROBLEM:

The functional description of-the process management

(upper) module is as follows:

"The module provides routines for:

a) the control of processes; specifically, creation

and deletion.

b) interprocess communication with buffered

messages.,,30

These functions correspond to the functions of the

process creation subproblem and the message facility sub-

problem. The process creation subproblem, as described in

section 7.3.4, is concerned with the protocols for process

creation, and correspond directly with the functions of this

operating system module.

The second subproblem included in this comparison is

the message facility subproblem which was decomposed from

the interprocess communication main subproblem. For reasons

stated in the last section, the message facility subproblem

was treated as an independent design problem at the level
of a main subproblem. Its functions, as described in

section 7.4.2, are concerned with the existence and use of

a message facility by all process for interprocess communi-

cation. These functions correspond with the functions of

"interprocess communication with buffered messages" as

Madnick and Donovans p.388.

''
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U Specified in the process management (uppdr) module.

8.2.4 DEVICE MANAGEMENT MODULE COMPARED WITH THE DEVICE

MANAGEMENT FUNCTION SUBPROBLEM:

The functional description of the device management

module is as follows:

"This module provides the routines necessary to

issue the appropriate input/output commands to

extended devices. A special portion of the device

managemen-E routine- lhandles interrupts."31

These functions correspond" to the functions contained in

the device management function subproblem. As described in

section 7.3.7, this subproblem isconcerned with the

functions required for devicemanagement, specifically, the

procedures for requesting resources and I/O by the user.

8.2.5 SUPERVISOR PROCESS MODULE COMPARED WITH THE

SUPERVISOR PROCESS MAIN SUBPROBLEM:

As implied by the title of this section, both the

module and the main subproblem are nearly identical.

The functional description of the supervisor process

module is as follows:

"This module serves as the job scheduler. It can

use all the functions provided by the previous modules

to create an interface for the process of user jobs. '32

These functions correspond exactly with the functions of the

31Madniok and Donovan, p.389.
M2Madnick and Donovan, p.389.

32-
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-!supervisor pr6cess main subproblem,. As described in section
7. 3.1:, the supervisor process is cohcernedwith the

generation of a muiti-progianming environment for user

processesi It is. that process which prepares and schedules

user jobs for eecution, |j

8.2.6 SUPERVISO1R CALL HANDLEk COMPARED WITH THE EXTENDED

MACHINE'INSTRUCTIONMECHANISM MAIN, SUBPROBLEM:

Madnick and Donovan describe an additional group of

rout~ies which are not reflected in the heirarchical opera-

ting system structure as follows:

"Several routines don't conveniently fit our

heirarchibal level structure. The most notable case

is the SVC handler used to activate the extended

machine instructions and transfer between levels."

The requirements for these routines are wholly contained in

the functional description of the extended machine instruc-

tion mechanism main subproblem. As described in section

7.3.2, the main subproblem is concerned with the character-

istics and protocols for the use of the extended machine

instructions. Since these instructions may be called by any

level or layer of the operating system, they cannot be

generalized into the heirarchical system structure.

8.2.7 SUMMARY OF THE FUNCTIONAL COMPARISON:

The comparison of the functions of the modules for the

Sample Operating System with the functional description of

the requirements contained in each design subproblem defined
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by the description methodology has yielded several

instruction insights:

The rationaie for treating design subproblems,

resulting from the-second decomposition of: ' main,

s problem, as independent design problems at the.

level of main subproblems was developed. Since-

independent design problems provide a framework,

yet impose fewer constraints upon the designer,

the design process should deal with subproblems

as independent design problems to be optimized.

• The decomposition methodology identified a greater

number of subproblems, and the subproblems were

internally more defined, than the levels and layers

of the final operating system design. For instance,

the process management (lower) module has three

distinct functions:

a) schedules and run processes;

b) defines eligible processes;

c) provides basic system primitives.

The decomposition methodology identified four sub-

problems to correspond with the function process

management (lower) module; specifically:

a) process scheduling function;

b) system initiated interrupt handler;

c) user initiated interrupt handler;

d) process synchronization mechanism.
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The designer now has-at his disposal a framework in

w~hich- the functions of each subproblem .4re- clearly def ined,

interna1y . The-!designer next investigates alternative

implementation schemes to satisfy the requirements of each

subproblem. In addition, the interfaces between pairs of

-subproblems are clearly defined-so that, in the c6e of

system and user initiated interrupt handler, common functions
or processing may enable concurrent implementation schemes

for subpr6blems so closely related.

Therefore, the designer is presented with a clearly

defined framework of subproblems which he may choose to

agglomerite into larger modules to satisfy the design

problem.

The next section will investigate some of the inconsis-

tencies identified by the decomposition methodology.

8.3 Inconsistencies Identified in the Comparison of the

Sample Operating System and the Decomposition

*iethodology

The inconsistencies identified in the comparison of the

Sample Operation System and the decomposition methodology

were of two types. First, the final design of the Sample

Operating System contained certain features that were not

reflected in the results of the decomposition methodology.

Second, process of requirements definition, interdependency

assessment, and application of the decomposition methodology
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C-) identified unresolved- conhtentions or conflicts in the

Sample Operating System.

8.3i.i FEATURES OF THE FINAL DESIGN OF THE SA4PLE OPERATING

SYSTEM.,NOT REFLECTED. IN THE RESULTS OF THE

DECOMPOSITIONM METHODoLOGY:

The main feature not captured in the decomposition

methodology was the heirarchical nature of the Sample

Operating System. This is significant because .the heirarchi-

cal design incorporates a strictly limited interfacing

protocol between the levels-and layers of the Sample Oper-

ating System in which each successive level from the bottom

up, ,depends only on the existence of those levels below it.

It can be argued that the heirarchical construction

technique was a design decision made in a later stage of the

design process since it satisfies the objective of the

design; that is, the,' t6dular and heirarchically structured

design is pedagogically effective. Yet, the interface

protocols are very restricting and the separation of the

process management module into an upper and lower module

were dictated by existence dependence of upper levels upon

lower levels. Therefore, an investigation was made of the

linkages between subproblems to determine if the heirarchical

nature of the Sample Operating System could be inferred

"post facto" from the facilities available in the decomposi-

tion methodology.

( The results of the previous section were used to
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identify when, subproblems and modules were equivalent.

Final Design Decomposition Methodology

ProcessManagement (lower) Process- Scheduling
Module

System Initiated Interrupt
Handler

User initiated Interrupt
Handler

Process Synchronization

Mechanism,

Memory Management Module Memory Allocation

Operating System Information
Tables

Process Management (upper) Process Creation
Module

Message Facility

Device Management Module Device Management Functions

supervisor Process Module Supervisor Process

Supervisor Call Handler Extended Machine Instruction
Mechanism

Since the linkages between subproblems are assessed in

an andirected manner, and are symmetric, the actual direction

of the linkages could not be determined. Therefore, no

statement could be made in regard to an "upper" module

calling a "lower" module.

A comparison was made of the raw number of linkages

between subproblems. The tabulation of this comparison is

presented in Appendix K. It was expected that some sort of

trend might be established with the number of linkages,
I/



-cumulated first by, subproblem, s;econd by module.. Speczifi-

cally, since the process management (lwer) module is the ,

closest to the bare machine, it must be used frequently and,

'therefore, one would expect the number of linkages to it to,

be relatively large. Conversely, the device management

module isa -layer of the operating system; therefore, its K
level of interfacing in raw numbers, should be considerably

lessthan the previous example.

The results of 'the Comparison are as follows.:

SThe average number of linkages per subproblem equalled,

16.18.

* Processmanagement (lower) module had the greatest

number of linkages, yet no trend could be established.

That is, the number of linkages exhibited no signi-

ficant trend as one approached closer to the bare

machine.

* The fact that the process management (lower) module

had a greater number of linkages was due more to the

fact that it was composed of four subproblems, rather

than by any existence dependency.

Therefore, the decomposition methodology gave no inferrence

of a heirarchically structured operating system.

8.3.2 CONTENTIONS IDENTIFIED DURING THE APPLICATION OF THE

DECOMPOSITION METHODOLOGY:

During the process of requirement definition, inter-

dependency assessment, and application of decomposition
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-methodology, numerous unresolved issues were discovered

which:could lead to, contentions or €onflic€s during imple-

mentations. These issues were involved with the implementa-

tion pf system requirementsa&nd were-the result of the

application of worst case usage of the system to determine

if the requirements set was complete. The unresolved,

contentions were as follows:

The operating system must have some finite limit in

the number of jobs that it will accept before a

critical resource is fully allocated. The limit could

involve-memory, dedicated devices, or IBM System/360

protection keys. The limit was not established in

1 the requirements, nor was any priority specified to

determine which is the critical resource.

The message requirement number 56-states: "Any

number of messages, for a given process, may be queued

while waiting to be read by the process." Since the

memory area for buffered messages is dynamidally

allocated, it is conceivable that one process could

do nothing but write messages to itself. Carried to

an extreme all of memory could be consumed by the

process in which event the system would become

deadlocked. Therefore, some finite limit should'-be

placed on the number of-messages which a'process may

have enqueued before it is forced to read the messages.

. Requirement 24 states: "Ready processes are scheduled

_77 '4
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Ain simple round-robin fashion by theprocess-

schedier." The process scheduler checks an informa-

tion table to-determine if a given process is ready;

if it is not ready, the process scheduler checks the

next process'in a sequential chai'. It is conceivable

that all processes in the system may become blocked

at the same time. Therefore, the process scheduling

function must include some mechanism to first deter-

mine that all processes are blocked and second, to

Attempt to resolve the situation.

The preceeding contentions became obvious during the

decomposition methodology. The lack of further contentions

was not meant to imply that no further contentions exist in

the Sample Operating System. The decomposition methodology

contained no rigorous methodology to determine if a complete

and consistent set of requirements had been defined.

8.4 Summary

The final design of the Sample Operating System was

verified by the results of the second iteration of decompo-

sition methodology. The decomposition methodology identified

eleven well-defined subproblems which corresponded in a

consistent manner with the functions of the six levels and

layers and SVC instructions handler of the final design of

the Sample Operating System.[ The decomposition methodology did not infer the heir-
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A

archidcal structure ,of the. final design. However, the

identi'fication of linkages between pairs of. subproblems-

explicitly defined the interfaces which were incorporated

into4 the modules of the final design.

The procedures involved in the decomposition-methodology;,

that is, requirements definition, interdependency assessment

and decomposition methodology, include no rigorous attempt

to ensure that a complete set of requirements was defined

for the Sample Operating System.

The next chapter will present recommendations for

improvements of the methodology based upon the analysis of

the Sample Operating System.

( ) :
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CONCLUDING STATEMENTS CONCERNING THE

APPLICABILITY OF THE DECOMPOSITION, METHODOLOGY

TO THE DESIGN PROCESS AND-RECOMMENDATIONS

FOR IMPROVEMENT

view of the decomposition methodology applied to the Sample

Operating System. Based on the experience, conclusions

will be discussed concerning the applicability of the

decomposition methodology to the design±process.,

9.1 objectives of the Methodology

The objective of the application of the decomposition

methodology was to support the designer in the architectural

design phase by providing the designer with a framework in

which the desiqn problem can be studied in a well-defined

and organized -fashion. The architectural design phase

consists of a well-structured series of activities that the

design engineer should perform in order to achieve a better

understanding of the design problems at hand, as well as to

avoid implicit and unwarranged preconceptions that can bias

the eventual design significantly. The decomposition

r?  methodology supports the architectural design phase by

Lclustering the global system requirements into subproblems4
The methodology then does not purport to provide a best

answer, since the techniques are satisfying rather than

optimizing.

:77 7I



The, purpose of this chapter, the methodology must be

expanded to include the following stages:

Requirements definition stage;

. Interdependency Assessment Staige;

Application of the Ded6mposition Methodology Developed

by Andreu.

The methodology-supports the design process by

decomposing system requirements into subproblems. The sub-

problem concept narrows the scope of consideration of the

design engineer to more specific well-defined areas of

concern. But as pointed out by Leopold, Svendsen, and

33Kloehn, subproblems create more, levels of management and

organizations-produce designs which are copies of the

communication structure of the organization. The result can

be that the solution to the' design problem becomes a series

of compromises based on political expediency rather than

on technical objectivity. Any methodology must provide for

better communication based on technical objectivity to

satisfy the design problem.

The decomposition methodology facilitates consideration

and discussion of the system requirements, system objectives

and constraints early in the design process. In fact, the,

methodology forces the user to conduct a pair-wise assess-

ment of the interdependencies of all requirements. This is
ReuvenLeopold, Edward C. Svendsen, and Harvey Kloehn,

"Warship Design/Combat Subsys-tem Integration - A Complex
'Problem, Unnecessarily Overcomplicated", NavaZ Engineers

* Journal CAugus-t 1972) p.44.
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0.tignificAnt intwo ways:1
An, exhaustive: pair-wise assessment of interdependen -

cies -executed- in a top-down manner, forces: one to

think in -terms of conceptual models freeing the

designer o.f his dependencies. upon, traditin-bound:

designs.

The decomposition methodology causes the elimination

of prevalent misconception or traditional design
practices by displaying the complex interrelation-

ships which heretofore were unavailable to the

designer.

The usefulness of the methodology was verified by the results

of the application to the design of the Sample Operating

System as stated in section 8.4. Yetthe experience gained

in the application of the methodology suggested improvemi.nts

to all three phases of this methodology to improve both its

effectiveness and to increase the scope of the applicability.

The next ,section of the chapter will present those recommend-

ations for, improvement.

9.2 Reconmnendations for Improvement

9.2.1 SUGGESTIONS TO IMPROVE COMMUNICATION:

The decomposition methodology is but a small supporting

tool in the ooverall design process; specifically, in the

architectural design phase. The most time-consuming stages

(of the methodology were the requirements definition stage



7-/

" -148-

and interdependency assessment stage. -The functions

required in each stage were hand-written and the analysits

was performed off-line. The lack of any text facility pre-

cluded an on-line assessment of design problems. The time

required" to perform the stages of methodology- c6uld be,

reduced, an. the methodology-improved if the three stages
could be made completely interactive by the addition Of a

facility for limited documentation statements. The specific

documentation statements needed are defined in the supplement

sections.

9.2.2 REQUIREMENTS DEFINITION:

The problem associated with generating well-defined,

requirements statements, even for an existing system, are

well-known. This stage of the decomposition methodology

represented the greatest expenditure of time and'energy for

this thesis. As described in section 2.1, the functional

specification-phase of the design process is receiving

considerable attention from researchers. Sid Huff34  has

described a template format for requirements definition which

recognizes six distinct statements built upon three basic

language constructs. The :basic constraints consist of:

objects: which are items or activities such as item -

memory activity - allocated.

modifiers: which are strings of English adjectives that

describe the obj.ect.
34
'Sidney Huff, "An Approach to Constructing Functional

Requirement Statements for Preliminary System Design"; unpub-
lished report, MIT Sloan School, April, 1978, ov.6-7.

'-'I.-- -A-



'Imperativesi wh3.ch indicate the nature of relationsipsiie e o.d

Only two- imperatives are, recognized

can: implying conditional capability. _

will; must, be fulfilled.

These constructs are used to generate six templates which are

ogeneric types of requirement statements. They consist of the

following:

Properties: -a feature of the system.

Treatments: an operation, that is done to an object.

Timing '

Relationship: objects may be temporarily related.

Order
Statements: order relation, such as, equal to.

Measure: consisting of a parameter and a unit.

For example,

!Memory I  will belpilocated I  in ,2K blocks

item object imp activity object modifier

The template format is a useful structuring tool for

requirements definition which may serve to identify ambi-

guities or errors. The primary benefits of the template

format to the decomposition methodology are:

* It would provide a concise, well-defined requirements

statement which could be generated and stored on-line

using a menu of constructs.

• It would be useful for determining interrelationships

N -'
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'~_ sinced_:,the: statements. consist- of eldfnedkey-L

Ii -words.
. Completeness of requirements set could be verified

through the- use of simple algprithms which would

check for the 'existence of capabilities cleariy A.

defined in the property statements.

9.2.:3- ASSESSMENT METHODOLOGY:

The ,greatest weakness of the decomposition-methodology

is the fact that the 'binary assessment procedure is simplis-

tic andi therefore, ocbnstraining,. The. binary-, assessment-

,procedure does not allow any sort of sensitivity analysis or

weighting-of the interdependencies and does not- allow for

the representation or solution of an objective function. A
The lack of an ability to represent an objective fun d-

tion resulted in the separation of the design philosophy and

constraint statements from the requirements set that was

analyzed for interdependencies. All that one could say was

that the design philosophy and constraint statements must

apply to every other requirement in a global sense or they

apply not at all. If the interdependencies could be weighted

then it would be possible to assess the relative level of

impact and to establish, an objective function to be satisfied.

[ This objective function could be satisfied by a facility to

describe conceptual models or rathematical relationships on-

ri line. The-mathematical relationship would be of the form of

an expression interrelating different indices or measures



used to measure the degree of satisfaction of an objective

function provided by each interrelationship between require-

ments. The constraints upon the designmust also -be

represented as limits on certain criteria within which the

final values selected for -a system-must fall. Ideally, all

indicesused-to measure satisfaction of an objective function

must be reduced to.a common denominator. For instance, the.

objective function may be stated in terms of response time

(Ttota). The response time is related to CPU time for

execution (TcPu), InpUt/Output time (TI/o), waiting or

blocked time (Tw). Therefore, the objective function could

be stated in terms of T = TcpU + T + T . Inter-t /O w

reiationships among requirements would be assessed according

to a conceptual model involving a time index. The decompo-

sition methodology could then provid:e a relative measure of

the satisfaction of the objective function by each

decomposition.

9:.2.4 ADDITIONAL FEATURES:

Design is essentially an art, which is heavily dependent

upon 'e$i's background and biases. It would be interesting

although not.mecessary, to implement a facility in the

decomposition methodology which would enable a user to input

his own idea of the "best" decomposition in the form of sub-

problems. The decomposition package should then generate a

measure for the proposed decomposition and would serve as a

relative grade to the designer vis-a-vis the system-generated

"best" decomposition.
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9.3 ISummary

This study has demonstrated that the decomposion

methodology :proposed by Dr. Andreu is a usetulechnique

providing a framework for the designer for use in the

architectural design stage. It is recognized that this

methodology is a first step in the right direction. the

usefulness of the first step was recognized by Mandel ,and

35'Chryssostomidis:

"Unfortunately, the direct contribution of the

computer to design methodology is smail because the

capabilities provided by the computer do not augment

the user'ts ability as a designer but rather as an

analyst. For this reason, it. is felt that research

leading to documentation of an improved large system

design methodology that also takes advantage of today's

tools is both timely and worthwhile."

The value of the decomposition methodology will improve as

the results of its application ar verified through similar

research and improvements to the facilities are implemented

by designers in search of a better world.

35Mandel and Chryssostomidis, p.85.
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APPENDIX A

Formal Specification of Evaluati'on Parametexs



36
FORMA 'SPECIFICATION OF EVALUATION -PARAMETERS:

Gitren .A graph as A pair (,),where.

*X (xx 1,,... Xi}, the set of lxi obje~ts,**

And'

L {I d xist3 if a link j'oins objects i and j'-~

the set of links,

Define

A :a.. aj z 1 if .. exists, 0 otherwise ,the

adjacency miatrix associated with the graph.

Then,, the strength S'. of-a subset X.CIX can be expressed

as:

=a k1 ZX

while the-coupjline C.. between the subsets X. And Xj.CX,

**iXi is used to indi~oate the cardinality of set X.

3 6,Andru pp. 100-101.
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0O X.'X~ (thdempty' se6t,) can, be itt'On as:-;

X1

C.. XI* Ix

Apartition- P of X, JI

p

1 i, J:=

i s then, assigned -a measure -M:.

i 'E Si r. Cij
_ji+

The behavior of M is-such that the higher its value,

r ~the better the associated p"r" to foIu-upses h.

~we -should', in fact, search for the partition with maximum M

[ Value over all possible partiLtions of the set under decom--

position.
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Algorithm ~for-the Identification

of Kernel Subsets



'ALildt~I4M lk tt DEtITIFtCATION OF 'KERNlt St~pStTS

Rkecalling, the. following definitions: j
' The "core. set" CS. associated with-a node o. to zbe the

2. .

set CS.- : o',o s.t. .. =11 i~e., the set of-'all,w~~ 2. JJ 2J

nodes related to, oi, including oi itself, and( 'the "connectivity" of node o. to be
1

cj JICs 1, where- by- jx we mean the dimension of

set X.

Tlhe' identification of kernel subsets can be done iteratively

-using- the fol'2owing prcedu~re:

01) -Get J

1) -ComjPute c~ Vo. e 0. If cj c. V ilj,l set J J +1;,

kESUj(J) =0;. "Stop.,

2) Consider' the k (> 'I, a number ~specified a priori;

see the end Of this section for considerations about

its value) -nodes with highest ci.. Without ibss of

generality, assume that these Air the nodes

')Determine CS. for o~ C {o 0**,?
2. l'' k

4). Compute KS-.,= (CS. CS. oe .to
2. 2 j=l j 2. 2

i~j

'5) Select o e f {oll D 'such that KS =min (1IKSjJ)

.4ndrei, pp'. Z25;426.



-) 6) t J~

1f]S 1CS t, set DPESUP) 0 id sop, el1se

set KSU"(J), =,o, (CS - KS .
p p p

P) St, cuirrenrt, set to:4.

0 ~ K S 0j KS(J);i [= 0,,, stop.

8) Recomp ute A:-

old' a.. if-oko e'0

fiJ, 6ij mark it "nonexkistent" otherwise

If k, > 0]J set- k =[0I~

Go to, 1.

Once the procedure is executed,, JKerniel subsets

f EU1),... ,KESU 'Jhave been identified. AI

0"
k~ '
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Preliminary Set of Requirements



1 i. The operatih, s~tem muit be simplej implementinga

'basic- -system nucleus'.

2. The operating system must be designed. as ,a pedagogical

too 1.

3. The operating sytem must be small; occupying fewer

'than 2500 cards of assembly language statements.

4. The operating system is to be implemented utilizing

IBM/360 hardware.

5. The operating system must provide for a multi-program-

ming environment.

6. The operating systemmust be process oriented.

7. The operating system must run on a machine that has two

distinct states.

8. All resource requests must pass through the supervisor

process.

9. System resources must be allocated to a job, prior to

the job being made eligible to run.

10. A process must be ready to run prior to being allocated

to a processor.

11. User communication with the operating system to VIA SVC

Instructions.

12. The operating system must protect the user jobs from

each other.

13. The operating system must utilize information tables to

,monitor and control processing.



14. system: tables can'be dynamically allocated and,

released.

IS. Certain extended machine instructions are User caliable.

16. System processes are keTentraiit and shared.

l7i Extended machine instructions are executed in the

supervisor state.

18. The supervisor processmust create and delete the

environment in which a job runs.

19. Initially one process ,is created for each user's job.

20. Jobs areoscheduied on a first come, first served

basis.

21. The job scheduling function must be modularized so

that improvements to the system can be easily

accomplished.

22. The process scheduler must time-slice CPU usage to

achieve multi-programing.

23. Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

24. A process shall be blocked, and controlreleased to

the traffic controller when a timer runout trap is

detected.

25. A process shall be blocked and control passed to the,

traffic controller when the process must wait for

synchronization with another process.

26. A process is blocked when it relinquishes controller
to the traffic controller.
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0 27. The suPervis6r routine must reclaim all system

resourceds for a job when the job has completed.

.28. The supervisor process must reclaim all system

resources when an error condition abnormally terminates

_a job.

29. Reference to processes withina process group is by

symbolic name.

30. The operating system must allocate memory for job

partitions, the size of which is specified by theruser.

31. Memory is allocated to a job in contiguous 2 K

blocks.

32. The operating system may dynamically allocate memory

to itself for system processes.

33. Memory is allocated using a best-fit algorithm.

34. Memory must be protected to-.prevent the simultaneous

allocation of: a partition to multiplejobs.

35. Free storage-areas are collapsed into contiguous blocks

of memory whenever a partition is freed.

36. Operating system ,must supply a device management system

which runs as a separate process, one per device.

37. Device handler routines must support multiple job.

streams from card readers.

38. All devices are dedicated.

39. The device handler routine Supports one card reader

per input stream.

40. Device handler must support one line printer per output

stream.
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-41. Input/output devices operate via, niultiplexor channel.

42. The user can provide his own routine for non-standard

:devices.

43. A :p;ocess synch#onization mechanism must be provided.

44. Aninterrupt mechanism must be provided.

45. :P-V operationsiare available only to system processes.

46. A message facility must be provided for user processes.

47. The message facility is accessible by all processes.

48. The name of the sending process must be prefixed to a

message.

49. 'Thereceiving process must read the name and text from

the originator.

50. Messages are of arbitrary yet specified iength.

51. Any number of messages may be queued while waiting to

be read by a process.

52. All messages are released when a process terminates.

53. Messages are not receipted for, from receive@ to sender.

54. If no messages are available to a process which expects

one, it goes blocked.

55. User programs utilize a simplified job control language.

56. The operating system must accept input data from the

user's job stream.

57. The supervisor process must load the user's supplied

object code deck into the user partition.

58. The user process may dynamically create and destroy

additional processes.
(

I



59. Dynamica11y created processes run in the s;me -partLr

tion as, 'the patent job.

60'. user processes cannot dynamically allocate memory -.

61. usei processes cannot destroy system processes within

the same6process group.

62. User ;processes run in the problem state.

63. The user process must signal completion of the process

to- the operating system.

64. The user's job can reference one input device, one,

output device, arid one exceptional device.

'65'. There 'is only one supervisor processes per job

stream. 2

ir1

K

'I!
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APPENDIX D

Preliminary Interdependency Assessment

Results

Note: (1) (s) Indicates that the requirement

indicated supports the imple-

mentation of the ,equirement

being assessed.

(c) Indicates that the requirement

indicated conflicts with the
implementation of the require-

ment being assessed.

(2) Requirements 1 through 4 were not

assessed for the reasons stated in

4.1.10.

o*
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0 5: The operating ;systet musit provide for a multi-

pogrammuuiig: eniermenrt,

8(): The operating system-must allocate resources as

a job is read into the system.

9(s): Resource allocation is performed as- a job is

read into the system, except fok processor

allocation.

16'(s: The need for pure procedures is driven by the

need to provide for a multi-programming

environment.

l9-(s) : The supervisor process creates Dne process per

job initially in support of multi-programming.

20 (s): Multi-programming requires that the jobs be

Sscheduled.

22 (s): Time slicing CPU usage facilitates multi-

'programming.
34(s): Multi-programming, requires that memory be

protected to prevent simultaneous allocations

of partitions.

37(s); Device handler routine facilitates the reading

4s of multiple job streams from different sources.

43(s): Process synchronization mechanism is used to

c6ordinate multi-programming.

55(s): JCL facility assists multi-programming by

delineating jobs and specifying resource

requirements.
\,I
oI



65(S) : The Superisorprocesscontrols multi-

programming environment.

-6: Operating -system must be process 6riented.

10(5): The process has certain resource requirements

apart from job level requirements.

1l(s): The SVC instruction support process requirements..

13(s),: Most information is maintained at a process

level.

19(s): A user job begins as a process.,

22(s): Process environment requires the-use of a traffic

controller to achieve multi-programming.

23(s): An algorithm is required for process scheduling.

t 25(s): Multi-process synchronization is a basic

function required for a process environment.

26(s): Relinquishing control to the-traffic controller

is a basic function of a process environment.

29(s): The naming of process is required as a means of

identification.

43(s): Process synchronization mechanism is a basic

tool. for process oriented support.

46(s): The message facility is a basic means of inter-

process communication.

47(s): Message facility must be available to all user

processes.

58(s): Dynamic process creation is a basic function for

( a process environment.
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R 7: Operating ,system must r2 on ao machine that has two.

distinct ,states.

li(s): User communication, via SVC instruction ensures

that 'the user may be restricted from cerain

privileged ins~ructions ,

15 (s): Only certain SVC instructions are user callablei

17(s): SVc instructions explicitly executed' in the

supervisor state.

62(s): User programs run in the problem'state; hence,

system processes run in the supervisor state.

8: All resource requests must pass through the supervisor

"' process.
Q5 t 9 (s): All resource requess must be made prior to a

job being eligible to run.

13 (s): Information tables contain the information

concerning resource allocation.

27(s): Supervisor also reclaims resources when a job

'has completed.

28(s): Same as 27.

30(s): Memory requests are user generatedi

32 (s): Dynamic memory allocation takes place through

the supervisor process.

55(s): JCL facility specifies the resources required

of a job to the supervisor process.

-60(c): The user cannot dynamically allocate memory.
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-' 64!.(sY)',' The user is restricted in the number of i/6

devices h-may request.

9: System resources must be allocated to a job, priot to

the- job being made eligible to run.

10:,(c): 'There are user resources; i.e., the processok,

which are. allocated at the process level.
27:'S)-: The same process reclaims resoures upon

completion'.

28: (s): 'Same as 27.

3'0:-(s): Mdmory allocation must fkll within this- require-

ment.

36:(s): Device handler routine, is started for each job

-at this time.-

55: (s): JCL facility identifies resources required of a

job.

10: A process must be ready to run prior to being allocated

a processor.

13:,(s): A process's status is maintained in an informa-

tion table (PCB)*i

19:(c): Initially the user's job is a process-.

4 20: (s)': The traffic controller may select a ready process

only.

23(s): Ready processes must be chained into a list of

eligible processes.

II
i C I25(c): A process is not ready if blocked.

b~
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26(c)-:. Same as 25.

4-(c).: 'Same, as 25.

11: User communication with the 'operating system is. via- SVC
in.truction.,

15:()I Only cer--ain SVC instructions are user callable.

26 (s)::' A process: relinquishes control via SVC

instruction.

46 (s): A request to send a'message is, via SVC

instruction.

49(s): A request to read a message is via Svc

instruction.

53(s): Dynamic process creation/destruction is via SVC

instruction.

63 (s): A process can signal ,job completion via SVC

instruction.

12,- The operating system must protect user jobs from each

other.

13: (s): Information tables contain information on jobs,

processes and resources.

18(s): Supervisor' routine creates a separate environ-

ment for each job and essentially isolates it

from other jobs.

34'(s): Memory is also required to be protected from

simultaneous user jobs.

(1 36(s): The device management routine runs as a separate

process, one per device to isolate jobs.



37(c) : The- device handler routines-deal with many j6bs

and must isolate each one.

43(s): Th& P-V -operations serve as a, locking function

and help to insure verifiable, access rights.

59(s),,: Dynamically created process must remain within

their process group.

13: Operating system must utilize information table to

monitor and control processing.

14 (s); Dynamic allocation of system tables is required

for multi-programming environment.

23,(s): Round-robin scheduling is most effectively
accomplished by chaining PCB's.

.( 30(s): Memory allocation requires adjustment to infor-

mation tables.

32 (s),: Dynamic allocation of memory by the operating

system is used for tables.

35(s): Free storage blocks must be updated each time

memory is freed.

36:(s): Unit control blocks are built and maintained by

the operating system.

43:(s): P-V operations are used extensively to update

semaphores and lock resources.

46: (S): The message facility is a buffered table which

is used to pass information between processes.

KT



14: System tables :can -be dynamically allocated- and released.

W 32(s),: Dynamic memory allocation fully supports this

requirement.
51(s) : The qUeuing of messages requires a dynamic

'allocation facility.

60(c),: The user is strictly prohibited from dynamic

allocation.

15:- Certain extended machine constructions are user callable.

26(s): The process may issue a, SVC instruction to -stop

itself.

47(s): Message facility is implemented with user

aUlable SVC's.

58(s-): Dynamic process creation is implemented with

.user callable SVC's.

63(s): User signals completion via an SVC instruction.

16: System process routine an re-entrant and shared.

21(s): Job scheduling is a system process which must be

shared.

32:(s): The operating system maintains pure code by

dynamically allocating memory for work space

for system routines.

36(s): The device management process is a system process

which must be shared.

61(c): User processes cannot, destroy system processes.
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0 l1: Extended machine _instructionis ,are executed, in the

supervisor state.

44(s)-: The interrupt handler must be provided to service:

an SVC interrupt.

18: The supervisor process must create and delete the

environment in which a job runs.

19:(s): The supervisor initially creates one process per

job.

27:(s): This requirement deals with the destruction of

processes.

28(s): Same as 27'.

58(s): User creation of processes supplements the job

environment.

61,(c): The user cannot destroy the entire job

environment.

19: Initially one process is created for each user's job.

58(s): 'The user process may create additional processes

,to create a process group.

20: Jobs are scheduled strictly on a first come, first

served basis.

21(s): FCFS scheduling is simplistic; therefore, we can

improve system performance at some later time

if this is strictly modularized.

39(s): The fact that all input devices are dedicated

forces us to use an FCFS algorithm.



-178-

.21: The job scheduling, function must -be modularized so that

improvements to the system can -be easily accomplished.

37(s) In order to improve the sophistication of-the

job scheduler,. it would be necessary to inter--

face to a great extent with the device handler,

routine.

39 (s): Again for the same reason, improvements to the

job scheduler are accomplished in conjunction

with input stream handler.

55 (s): JCL-would be affected by improvements to the

job scheduler.

22: The process scheduler (traffic controller) must time-
A

slice CPU usage to achieve multi-programming.

24(s): Timer runout trap is the result of CPU usage

being exceeded.

25(c): A process may terminate while awaiting

synchronization.

26-(c): A process may terminate voluntarily.

44(s).: The interrupt handler processes a timer runout

and returns control to the trafficcontroller.

23: Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

44(s): The interrupt handler gives control to the

traffic controller in order to dispatch another

process.

-



1 79-

C :8c,) : S pocests are scheduled in this fashion

a-user may desire to create more processes in

-order to grab a larger time quantum.

6 (p);: User, signals complet ion -s' that the next process

may start up.

24: A proces's shall be blocked, and control released to the

traffic controller, when, a timer runout trap is deleted.

44(s): 'The interrupt handler is the means by which the

traffic controller regains control,.

25: A process shall be blocked and control passed to the

traffic controller when the process must wait for

synchronization with another process.

29(s): Processes must be uniquely identifiable in order

to synchronize.

43(s): P-V operations are used system-wide for synchro-

nizationi but this is directed towards

synchronization of system processes.

46(s): User synchronization can be accomplished via the

message facility.

47(s): Message facility is available to users.

54(s): A process, expecting a synchronizing message, is

blocked until it receives one.

26: A process is blocked when it relinquishes control to the

traffic controller.

L'T-
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63(s): The usr_ must relinquish control by a specific

signal to the operating system.

27: The supervisor routine must reclaim all system resources

for a jobwhen the job has completed.

28(c): The supervisor must also reclaim resources if a

user- commits an error.

35(s); When memory is freed by direction of the

supervisor it must also re-configure..

36(s): The device handler routine is a resource that

must be reclaimed.

38(s): The devices used must be released.

44(s): A program interrupt starts things happening.

- )61(c): The supervisor routine must destroy all system

processes for'a job which terminates.

63(s): The user must signal completion.

28: The supervisor process must reclaim all system resources

when an error condition abnormally terminates a job.

35:(s): Memory is re-configured when it is reclaimed.

36:,(s): The devicemanagement routine must be reclaimed.

38(s): Devices resources must be reclaimed at this

time.

44(s): The interrupt handler signals that an error has

occurred.

61(c): The supervisor must destroy all system processes

for a terminated job.

(
:11. m ~ m m m m~
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c, 29: Reference to° processes within :a process group is by

symbolic name.

48(s): The sending process must have a name.

49 (s): The receiving ,process must have a name for the

message faciity to operate.,

58 (s),,:- A- -process is givena. name at creation time.

59.(s),: Names are unique with a partition.

30: The operating system must allocate memory for job.

partitions, the size of which is specified "by the user.

31 (c): Memory allocation is limited- to increments of
2K blocks.

32 (c): Memory may also be allocated by the system.

33(s): A list of free areas is updated each time a

partition !S freed.

55(s): A simplified JCL is available for the user to

specify his memory requirements.

59 (c): Memory partition requested must be large enough

for all dynamically created processed.

,60 (c): The user cannot dynamically allocate memory.

31: Memory is allocated to a job in contiguous 2K blocks.

32(c):. The operating system does not need memory

allocated on 2K blocks since it has its own-

protection scheme.

33 (s): Best-Fi't algorith-a memorizes partition waste.

34(s): Allocation in 2K blocks allows hardware
p c (4 " protection by the IBM 360 system.

5:I "



182

35 (s): kemory is re-configured whenever it is freed.

43(s),: -P-V operations can serve as a lock on a database.

55(s): The user specifies memory requirements using jCL.

32;: Operating system-may dynamically allocate memory to

itself ftor system processes.
34.(s): system° Workspaces must be protected the same as

user Work spaces.

35(s)': Free areas are collapsed for system processes.

36(s): Device management system requires memory for its

own tables.

51(s): Message queuing facility requires memory.

60,(c): The user cannot dynamically allocate memory.

33: Memory is allocatedd using a best-fit algorithm.

35(s): Memory is reconfigured when deallocated to

insure that the largest contiguous blocks are

available.

55(s): User must specify memory requirements on JCL.

34: Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43:(s): The P-V operation is used extensively as a

lock on a database.

44:(s): The interrupt handler is provided as a means

of detecting out-of-bounds memory requests.

59(s): Dynamically created processes must run in the

partition of the parent job which further
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(9) protects mem6ry,.
60(S): The user is preven;ted from allocating add'itonal

memory.

35: Free storage areas are colliapsed, into contiguous 'blocks

ofmemory whenever a partition is freed.

63:(s): The user must signal completion to the operating

system -so that partition can be freed.

36: Operating system must supply a device management system,

which runs as a separate process, one per deviceA

37(s).: Device handler must, be included within device,

management system.:

38(s): Since devices are dedicated, only one process

per device is required.

39(s); These constitute the specific requirements of

thd device handler routine.

40(s): Same as above.

41(s),: Since I/O devices opprate via multiplexor

channel there is not need for I/O traffic

controller.

42(s): Device management system must enable the user

to supply his own handling routines.

43(s): P-V operation is used to lock devices.

44(s): P-V plus limited interrupt facility provide I/O

interface.

(
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U 37,: Device handler routines must support. multiple job

streams from card readers.

38(s): Dedicated devices enable sequential processing

and simplify designation of job streams.

39(s(s): A card reader represents an input stream; hence,

multiple card readers represent multiple job

streams.

41(s): Multiplexed channels enable simultan6ous servicing

of multiple, devices.

43(s): P-V operationsiare used to lock devices.

56:(s): Thedevice handler must be able to distinguish

among user decks and data cards.

(v 38: All devices are dedicated.

39:(s): Since devices are dedicated, a card reader

represents an input stream.

40(s): Since-devices are dedicated, a line printer

represents;,an output stream.

41(s): Multiplexed channel is used for dedicated

service.

42(c): Non-standard devices-may not necessarily b,

dedicated.

43(s): P-V operations~are used to lock devices.

64(s): User-must specify which devices are being used

by his program.

39: The device handler routine supports one card reader per

input stream.
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40'(d): The output stream conversely supports ohe

line printer.

41,4S): Multiplexing eliminates the need for an I/O

traffic controller.

42(c): A user may specify his own routine.

64(s),: The user must designate the card reader to be.

used.

40: Device handler must support one line printer per output

stream.

41(s): Multiplexing eliminates the need for an I/O

traffic controller.

42(s): A user can supply his own routines.

(9 64(s):, The user must specify the line printer to be

used.

41: Input/output devices operate via multiplexor channel.

42(c): The user may provide his own routines and I/O

interface.

43(s): The P-V operation can be used to lock a device.

56(s): Input data for a user's program must be accepted

viamultiplec or channel.

42: The user can provide his own routine for non-standard

devices.

64: The user must specify the use of an exceptional

device to the system via JCL.

i*
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43: A process synchronization mechanism must be provided.

45(s),: the :synchronization mechanism is used as the,

basis for p;ocess supp6rt and, therefore, is

not available to users.

44:,An interrupt handler must- be provided'.

63(s): A user signals completion- via SVC interrupt.

46: A message facility must be provided for user processes.

47:(s):, The'message facility is available to all

processes.

48:(s): Requirements for sending a message.

49: (s): Requirements for receiving a message.

50:(s): This contains the message length requirement.

51:,(s)': Messages may be queued in order to be readby a

process.

52:(s): Messages are released when a process terminates.

53:(s): The message facility has no receipt mechanism.

54:(s): Messages can be used for process synchronization.

48: The name of the sending process must be prefixed to a

message.

49(s): The receiving messagemust be able to read from

whom the message came.

53(s): The message facility does not receipt for

message transfer.

( 54(s): The message facility can be used for one-to-one

process synchronization.



49,: The receiving process must read the name and text from

the originator.
51 (c): The qeuing process makes it essential that

the message receiver be able to tell from

whence the message came.,

53(c): Messages are hotreceipted for.

54(c): A process awaiting synchronization must be able,

to determine that the message is from the

proper source.

5O:: Messages are of an arbitrary, yet specified length.

51(s): Since messages may vary in length, queuing them

is the most simplistic means of dealing with

the variable length.

52: All messages are released When a process terminates.

53(s): The sending process may have been terminated

before the receivihig process read the message.

55: User programs utilize a simplified job control language.

60:(s): User is limited to the amount of memory

specified in his JCL.

64(s): The user must specify his input/output device

requirements utilizing JCL statements.

56: The operating system must accept input data from the

user's job stream.
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65: (i): The supervisor process controls the loading of"

the u.er's deck into the machine.

57': The supervisor process must load the user-supplied

object deck into the. user partition.

60: (S): Once the user's deck is loaded, he, is stck

with whatever memory partition he-requested.

65: (s): The supervisor process handles the loading

function.

:58: The. user process may dynamically c reate and destroy

additional processes.

59:(s: Dynamically created processes are liited, to

the user's partition.

60(c): The user cannot destroy-system processes.

61(s): User-created processes are limited to problem

state.,

59: Dynamically created processes run in the same partition

as the parent job.

60:(s)Y: The user process cannot create processes which

also expand its memory requirerents;

62: (s): User processes all run to problem state.

61: User processes cannot destroy system processes within

'the same process group.

62:(s): Since all user processes run in the problem

state, and system processes in the supervisor JI
II
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C) ~tate, are- prot cted

63'the -user pjrocess miust s;igcnal co6mpletion,:of the pfroccess

to the-operating, systei.

6: -The sudpervisor process ,,nw takes. over to- re-.

claim re6'6,rcs -or to signal the traffic

conitroller.'
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o NECOR ULINKS.

FROM NODE TO, NODE(S):

5 ( 1.1) '8, 9 16, 1.9, 20, 22. 34, 37y, 43', t5i

6 ' 13 10, Il' 13,- 19,, 22Y 23, 25, 26, 29i 43 ,-
~46., 47-, '58Y

A7 ( 4) I1., 15, 62,.
8 (10) 5, 9, 13, 271, 28, 30, 32, 55, 60, 64,
9 ( 8), 5, 8, 10, 27,v- 28Y 30, 36, 55,

10- ( 9) 6 9, 13, 1 9, 20, 23, 25, 26, 54,
11'i 8), 6,Y 7y 15, 26,r -4 ,'49-r 58, 63,

'13 ( 62) 6, 8, v 10,12, 14, 23, 30., 32i 35, 36,
43, 46,

1 .I5 1' 7 -11Y 26, 47i 58,y 63,
, 16 ( 5)' -5,p 21:, 32, .36, 61l-,v

17' ( 2) 7, 44,
I'8 ( 6) '12, 1 9, 27, 2Y 58, 61,
19 ( 5-) 5, 6i 10, 18v 58,
2Q ( 4) 5, 10, 21, 3?,.
21 ( 5)- 16, 20, 37, 39, 55,
22 ( 6) 5 6t, 24, 25? 26, 44i
23 ( 6) 6, 1', 13, 44, 58, 63,
24 ( 2) 22, 44,
25 ( 8) 6, I0, 22, 291 43, 46Y, 47, 54,
26 ( 6) 6, 10, I i, 15, 22, 63 ,
27 ( 10) .8', 9, 18, 28, 35, 36, 38, 44, 61, 63,
28 ( 9) 8, 9, 18, 27, 35, 36, 38, 44, 61 ,
29 ( 6), 6, 251 48, 49, 58, 59,
30 ( 9), Sp 9, 13, 31, 32, 33, 55, 59, 60,
31 ( 7) 30? 32, 33, ',34, 35, 43, 55,
32, ( It:) 8', 13, i4,' 16, 30, 31, 34, 35, 36, 51,

33, ( 4) 30, 31, 35, 55,
34 9) 5, 12, 31, 32, 43, 44, 59, 60, 62,

35 ( 7) 13, 27, 28, 31, 32, 33, 63,
36 ( 15) 9, 12, 13, 16, 27, 28, 32, '37, 38, '39,

40, 41, 42, 43, 44,
37 ( 9) 5 , 12, 21, 36, 3e, 39, 41, 43, 56,
38 (-10) 2 ?, 28, 36, 37, 39, 40, 41, 42, 43, 64
39 ( 9) 20, 21, 36P 37, 38, 40, 41, 42, 64,
40 ( 6) 36, 38, 39, 41, 42, 64,
41 ( 8) 36Y 37, 38, 39:- 40, 42, 43, 56,
42 ( 6) 36, 38, 39, 40, 4i, 64,
.13 ( 12) 5, r , 12, 13, 25, 31, 34, 36, 37, 38,

41, 45,
-44 (9) 17, 22, 23y 24, 27, 28Y 34, 36, 63,
45 ( ) 43,
46 ( 12) 6, ii, 13, 25 -171 48v 49v 50o 517 52v

bj3, 54,
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47 C4)" 6 15 , 2'5,4
46,v 4,9 , 53i .54,

49 ( '7-)- 11, p29-i 46, 486, .51: 53i 5$4,y
5s0 -2) 46, y 1,

'52 ( ) 46y ti,
53 (4) 46Y 48'7 490 520-
54 (5) , 10, 2t 46, p48, 49,7
~56 9-) 5? 8i 96 21 P3, 31-P 33, 60Y 641

457 ( 2) 60,i 654

59 (7~) 12, 297 30t 31,'p, 58Y 60 v 62,
60 ? 9) p 14, 30 r- 32r 347 55, 57, 58Y 59,

62 ( 4) 7p 34., 59Y 61,t
613 C 8) 11, 15,I 23, 26,p 27y- 3t, 44r 65,
64,( 6) By 38, 39, 40v 4 55
65 C4) 3'v 56Y 579 63,

(AYERAGE Nb 'OF LINKS PER NODE:* 6 058).*

ISOLATED NOrIES:.

67
68

'R E Q:
'!INO

MHE FOLLOWING NODES HA 'VE' B~EEN REMOVED:
. 2' 3 4 6 67 68 69



'NODE - ",,S HAV~,k EN RENAE ASFLOS
OLD- NO. NEW NO.i

73
8 4

106
li 7

.12 a
13 9'
14 1.0
15 It
16 12
'7, 13

18. 14
19 15
20 16
211'7
22 I8
23 19
24 20,
.25 21
26 22ci27 23
-28 24
29 25
30 26

31 27
V32, 28

33 29
34 30
35 3
36 32
37 -3
38 34
39 35
40 3

*41 37
42, 3
43 39'
44, 40
45 4-1
46 42
47 43
48 44,
49 45

50 46
*51 47

52 4&



! 5 49'

5.-

'58a

53-

' 57

63 '59

65 61

RE Q~
SAVE

ENTER FILE NAME".
SOSA'±,2

'STATUS SAVED IN FILE SOSA12

PRECLUSTER-ING COMPLETE),

: RECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH P
(CLUSTERS NOT TAKEN AS SINGLE NODES.

ZCLUSTEk ,NO) OBJE CS 40 (I) 41

i 1) ± '21 ( 1) 21 41] ( 1) 42'
'22 ( 1) 22 42 ( 1) 43

3 () 3 23 (1) 23 43 ( 1) 44
24 ( 1) 24 44 ( 0' 45

4 (1) 4254 i
-(1) 5 5 )254 ( 4

6 ( 1) 6 26 . 1) '26 46 ( 1) 47
27 ( t) 27 47 ( 1,) -48

8 1) 7 28 (1) 28 48 (1) 49
C (1) 9 29 1 1) 29 49 (1) 50

10 1i. 10 0 1) 30 50 ( 1) 5111 1) 10 31 (1) 31 51 , 1) 52

-.'2 (i) 12 32 (1) 32 52 (1) 53(1)13 33 (1) 33 53 (1) 54
31 ) 13 -4 (1) 34 54- (1) 55

14 (1) 14 C? C( 1)' 35 t5 (1) 5615 (1) 15 36 ( 2) 36 38 56 (1) 57
37 (1) 37 57 (1) 58

17 (1) 17 38 (1) 39 58 (1) 59
1s (1) 18 -

919 (1) 19 3 1.) 40 59 ( 1) 60
20 (1) 20 60 (1) 61
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(PRECLUSTERING COMPLEITE)

PRRECLUSTERI'NG' PERFORME ANtii DrISTANCE MATRIX COMPUT'ED 11ITH P
cLU§TEks NOpt" TAkEN AS, SI-NGLE NDS

RE U
S IMA

SIMILARITY, MATRIX COMPUTED.i

RE04t.
,INPA-

.ENTER PERCENTAGE PARAMETER:
130.

'INITIAL PARTITION COMPUTED WITH P 8 0*,00 %*

SEST PARTITION iMEASURE:+f 0o.jS6,
DbO YOU WANT TO 'PRINT THE TREE-?,

NO

RE Q

CLUSTER (NO) OBJECTS

1 (15) 1 4 5 -9 10 26 27 28 29 '30
31 51 55 .56 58

2 (13) 2. 3 6 7 11 13 15 19 21 22
43 54 59

3 (15) B8 12 16 17 32 33, 34 35 36 38.
37 39 41 52 60

4 (7), 14 18 20 23 24 4057
5 11) 25 42 44 45 46 47 48 .49 50 53

61
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.J~REQ "

:HCM2

BEST .F'ARkITION MEASURE: 0. 7'7,
.0 YOU PWANT TO RINT T HE TREET

REQ:
PRCL

CLUStER (NO.) OBJECT's

1 (14). 1 8 12 16 17 32 33 34 35 36
38 37 39 60

2 ('14) 2' 6 7 11 15 18 19 20 21 22
4o 43 54 59

3 (2) 3 1,
4 (14) 4 5 '9 10 26 27 28 29 30 31

51 -55 '56, 58-
5- (4-) 14, 23 24" !7
6 ( 9,), -25, 42 44 4 5 46 47 48 49 50
7 ( 1.) 41I

8 ( 3-) t 2 53 61,

(PRECLUSTERING COMPLETE)

PRECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED .WITH P =,
CLUSTERS NOT TAKEN AS SINGLE NODES.

REQ
+IC M3'

SEST PARTITION MEASURE: 1.1i9
DO YOU WANT 10 PRINT THE. TrREE?

RE0:

FIRCL

CLUSTER (NO). OBJECTS

1 (11) 1 8 12 16 17 -33 39 41 52 53
-61

2 (17) 2 3 6 7 11 13 15 18 19 20
21 22 25, 40 43 54 59

3 (16) 4 5 9 10 26 27' 28 29 30 31
46 47 51 '55 56 "58

4 () 14 23 24 57
() 32 34 35 36 38 -. 37 60-

6 ( 6) 42 44 45 48 49 50



-E: 'RIrtON HEASURE:# I, I"t-.
fiQ YU WAT TOPRINT THE'TES

S ET 'PAPER AND-PRESS, REfURN,+*

23 --- - -- -- - - - - - - - - - -
-' - - -- - - - - - - - -

14 ----------

-4, ------------

53---------------------------- ---------
6- --------

6~-----------

6-----------------------

V7------------*

8 -- - - Il
41---------------------
33- --- -- 1-

4 1 ------ ---- I
a a

27---------------- -I

29 --------

30 *------------------------- --

-- --------- --

461---- 1---------------------- 1

90------------------ a a



__ __ __ ___-_-7 - :ii

N0 3&r V4': :

60, " -.'--"------

•49 ------= ", ----------'

"42 * i . I I I

3 4- -- ---- -I
43 -------- I--

-- - -- - ---- II

25 -------- ----------------- '-- I

1 ----------- -I

8 - - - .-- -- -' . . -- i

49. . .. >K I ... .. .. I

40 - ---------- ----- -
59 --------------

' - --- -- -- --- -- --

---------------

... I - I'- .. . . II

dOLLAPSED OBJECTS:O

6:)o 36 38

MEASURES*:
-193o500 -187,500 -180.167 -173.667 -168,167 -165*667
-1589*97 -153.917 -145.917 -138+917 -133I750 -123.500

-120.-150 ,r11'2.500 -"109-000 -102.750 -96. 250' -93*050
-88.217 -82.'800 --80#050 -77,717 -70*500 -66.*333
-61.361 -56*278 -51*236 -45.653 -40*528 "-37.375
-32.875 -31.591 -. 06 -23.694 -21+278 -20.155
-18,224 -16,012 -12.858 -10.633 ,8.539 -7,770
-7174 -5+805 -3.277 -2*350 -1,722 -1,070

.-0+3-48 0, 160 0,484 0,779 0. 911 1, 119
0.97 1.051 0.742 0.240 0081

40(6~
59-



PRCL

CLUSTER: '(NO) ObJEdf S:r

1 IA4) X ,8 12 16- IJ 33 39 41 52 53

2 61) 1 13 15 18 19 20
2i 22 25 40' 434, 54 59

3 (-6) 4 '5 9 10 26 27 28 29 30 31,
46 47 ,5, 55 56 58

4 (4) 4 23 24 57
5 (7) '32 34 3536 38 360
6 (6) 42 44 45 48 49' 50

EVAL

STRENGTH: 1.9e64,
cOUFLING: 0.8674Y
MEASURE: 1.119,

RED:
-DENO

/2 q lloply Bly2r 22 , 40,43,54,59,4,5,9, I0,,26,27,28,

45y48t49v50/

THE FOLLOWING NODES HAVE BEEN REMOVED:
2 3 4 5 6 7 9 1o, 11 13

14 15 18 19 20 2 1 22, 23 24 25
26 27 28 29 30 31 32 34 35 36
37 38 40 42 43 44 45 46 47 48
49 50 51 54 55 56 57 58 59 60

NODES HAVE, BEEN RENAMED AS FOLLOWS*'
OLD NO. NEW NO,

1 1
a 2

12, 31b 4

17 5
33 6
39 7
41 8
52 9

53 10
( 61 11



bfMN
(PRECLUSTER ING; COMPLETE)

NO, ?RECLUSTERING -PERFORMEDf DISTANCE MArRIX COMPUTED, WITH P -.

REQ:
SIMA

SIMILARITY MATRIX COMPUTErl.

REQ*
INF'A
ENTER PERCENTAGE PARAMETER:

80,

INITIAL PARTITION COMPUTED' WITH P =80;:0.0 %.

REG:
HCM:3
BEST PARTITION MEASUREI: 0.091
EO YOU WANT TO PR-INT THE, TREE?
NO

RE Q
FRCL

CLUSTER (NO) OBJECTS

I (1t) 1 2 3 4 5. . 7 8 ? 10
±1

REQ:

EVAL

STRENGTH: '0.099,
COUPLING: 00000r
MEASURE: O 91. ,

) I



!:0 REG::;T ~ ~~ E .FL ' ' '

ENNTERFILE NAME,:
SSA1l2.

ADJACENCY .HA'RiX' REA FROM .FILE SOSA12

,I:ENo,

/ 8*1'I2 Y,16 ,17, 3 3,p39,v4, p52, 53,y6 1,y4,y5,' 9,P I 0', 2'6,p274 28 ,'2 9, P3 04 >3 46,47

4
5 1 , ,5 , 58 ,i y4, 2 t:2.4 ,v7 ,32 ,34,351P16,38,37, 60,42"r 44,v 45 ,48, 49,50/

THE FOLLOWING' NODES HAVE BEEN REMOVED:
1 4 5 8- 9 10 12 14 16 17

23, 24 26 '27 28 29 30 3i 32 33
34 35 36 '37 38 3 41, 42 44 45
46 '47 48 49 50 51 52 53 '55 56
t7 6o 61

NODES HAVE BEEN RENAMED, AS FOLLOWS#
OLD NO. NEW NO'.

, 2 1
~2

6 3
7 4

.7
18 8

19 9
20 10

22 12
25 13

14
43 15
:54~ 16

59 17

.I

t ; ' ~



REP:

SIMILARITY MATRIX, COMPUTED41

REG:

ENTER PERCENTAGE PARAMETER:'

'INITIAL PARrTIION COMPlUTE' WITH, PF 80.,00' %.

REL1:

SEST PARTIT7ION, MEASURE:' 0,448.
DiO YOU .WANT TO PRINT THE TREE?

N~O

PR CL0

CLUSTER (NO) OBEUETS

1 ( 8) 1* 3 7 -9 11 13 i5 16
2 (:6) 2 4, 5 6 12 17
3 (3) 8 : O 14

REQ:
EVAL.

STRENGTH: 0#8857Y
COUPLING4 0.4375F
MEASURE: 0#448#



'REST.
ENTER FILE AME:'

ADJACENCY MiAfkl-X REAfD FROM FILE. SOSAi2

E0

THE-FOLLOWIING- NODIES HAVE BjEEN REMOVED:*
1 2 3, 6 1- 12: 13 14A

1 16 ~L 8 19 20 2 1 22 23 24
2t 32 3 34 35 36 37 3 8 39 40
.41 4 43 44 45 48, 49 50 52' 5%3
64 7- 59 60, 6

NObEt HAVE B4EgN RENAMED, AS- FOLLOWS:
'OLD NO.s NEW, NO.#

52

106

(99

1'1
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* 4~.IIN

iNO PRECLUSTERING iPERFORMED; D"ISTANCE 'MATRIX' COMPUTED WI-TH P' 1,#

REG

INPA,
RETRPERCENTAGE PARAMtEE

INTi AL PARTITION COMPUTED WITOP8000 %

RaG

HBEST PARTITION MEASURE: -0+449

lid YOdU WANT 'ro PRINT THE TREE?
NO

R tQ,
PRCLK #
CLIUSTER (NO) OBJECTS

-------------------------
A (113) 1 2 3 4A 5 6 7 8 1.0 11

12 13 15
2 (3) 9 14 16

REQ:*
EVAL

STRENGTH:- 0.5-769Y
COUPLING': 0,12821
MEASURE-# 0.#A453 #



CETER: -fIL IAE

SOPENY-~tiKki.2RO -PtE'SSi2

DENO

17-3,;126i17p33,39p41 P52, 3P 61 3?6p7r1Jspv518 19 r0,21 22 0'5-

f-,HEt 'FOLLOWItN0G NODES, "HAVE B~EEN 'REMOVED +

1 2' 3' 4 5. 6 7 8 9 10
~1-1 f-2 13 15 1.6 17 18 19 20 21

25 26 27 2b, 2 9 30 31, 32 3
'34 -3* 36 '.37- 38- '39 40 41- 412, 43
44 4t 4 47 48 49, 50 51 52 53
54 55' 56- 58 59 60- 41

NODES8 HAVE BEEN, RENAMED- AS, FOLLOWS:
OLD NO. # No.

t4 3,

REG:

(PRECLUSTERING COMFLETE)

FPRECLUSTERI NQ PERFORk'MED. AND DISTANCE MATRIX 'COMPUTED WITH P = 1
CLUSTERS,- NOT TAK EN AS SIN3LE, NODES.

REM:
P7MA

SIMILARITiY MATRIX -COMPUTE:.,

REG:
INPA

ENTER PERCENTAGEPARAMETER:#
30.

INITIAL PARTITION COMPUTED WITH P 80#00 %

REQ:

CURRENT PRCLUSTERING HAS ONLY ONE CLUSTER.#
UNABLE T13 DO IT.



~REsT,
'ENTER- FILE NAME"

SOSAI -2

ADJ4ACENC-Y, MATRIX- READ ,FROK, PILE 5,OSA1,2-

-bENO

18 P,19' 2O 21 22,25 Y4,Y43 p,4Y,59 p4 y -,9,'

1,0 y26 27P28 v'294 30 v31,46 i47,v 5 , 55 56 ,5E)P,

14 p23, 24, 57,42, 44 ,45, 48,49, 501

THE FOLLOWING ,NdDE9 HAVE it EN REMOVElE'$
'1 2 3 4 S' 8 9 1

'11 1.2 13- 14 1&i 17 18 1,9 20,
21 22 23 24- 25 '26 27 28 _0 30

31' 33 39 40 1 42 43 44 4 4
47 48 49 50 5,1 52 3 ZA 55 56
57 58' Z 9 ~

:NODES' HAVE 'bEEN RENAMED AS FOLLOWS:-
OLE' NO. NEW Na.

34 2
3b 3

364
375
38 6
60 7
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DUMN
(PRE,~T N COMPE TE

PRECLUS TER ING' 'PRF'ORkbP. AND DtISTANCE MtRIX CbOMPUTEDWtb{ witH"O'
TRS AK'EN:AS: SINGL.NDS.

'REao
SIMA '

'SIMARITY MATRIX COMPUTED.

NTER -PERCENTACE PARAMETER:
40,

NT I AL AkR I-T IO3N, COMHPU T ED 4tHF' 8.0

1. T' t 0NHtSU 0.4 619

'NO.

~PRCL

CLUSTER.-(N0), QfJECTS3

7 '1 -S 2. 3 4 .6 7

7 STRENGTH O.6V 0

O IG '0,. 9pM EA R~ O,6.~
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-ENTER-FILE ,NAME:f
-SOSA12

AACENCY ;MATRIX -RED FROM'fILE SQSA12,

REG
',DENO,

'25 i40,4T,54P,59 v4 p5, '0 Y20 2712S6i:29y 3 Zt46 P47 i517 55156 P58 r

A14 i23,r24o 57Y, 32-,.4 p -25436-vtb i37' ,66/

THE FOLOWN NO HV BEEN. :REMOVEDI:
1 2 31 4 .5 6 7 8 ~ 4

11 12 13 4t 1A 16, 17 1S 19 202. .2 23 -241 25 26 27 2 29 0
3 32- 3 3 134 3 5 34- 37 .38 39 40
4i 3. 46 47 5V 1 '52 53, 54 55 56

'57 58, 59 .061

'NODES 'HAVE' BEEN. RENAMED AS, FOLLOWS:
OLD, NO.i NEW, NO.#

44, 2'
453
48,
49,S

~. f:5 ~ 6,



(RRECLUSTERING -CMPLETE,).

PRECLUSTERING PERFORMED AND bISTANdt MAtkix COMPUTED WITHP1
CLUSTERS INOT TAI EN,'AS 'SINGLE NOPES-i

'REd #f
SI MA

SIMILARIT.Y MATRIX COMPUTED,,

R E QI
>1 NPFA
EtNTER PERCENTAGE PARAMETER:*

iNITIAL PARTITIONZ~OMPUtElD WITH P 80.00 7..

BEST PARTI-TION MEASURE:' 0.400
Do YOU WANJ' TO PRINT THE TREE?
NO

(j PkCL

CLUSTER (NO) OBJECTS

1 6) 1 2 3' 4 5 6
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APPENDIX7F

main, Subprobiemis Resulting From The
FirstIteration of The becomposition Analysis

Note: (11) The-number in Parenthesis indicates

the number of interdependicies

identified for the requirement.
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44... .... .... .. .lz& ulti p roe ramm ing suppor~t F nc i s5t 111 )  perating system mst arovide amultiw-rogb r

ming environment.

12' 7): Operating system must protect user jobs f±oorn

each -other.

16 ( 5): SystOm process outines -are re-entrant and

shared'.

20 ( 4): Jobs are scheduled strictly on a first-come,

first-served basis.

21 t 5)-: Job ;scheduling f =Ltion must be modulazized so

that improvements to the system can, be easily

-accomplished.

37 ( 9): Device handler routines must. support multiple
job streams from card readers.

43 (12)-: P-V mechanism must be ptovided.
45 ( 1): P-V operations are available only to system

processes.

56 ( 3): Operating system must accept input-data from the

user's job :stream.

57 ( 2): Supervisor process must load the :user's program.
65 (4)-: There exists one supervisor process per job

s tream.

Main Subproblem 2: Process Management Functions:

M5 2A: Proqess Creation and Scheduling.

-6 (14)Y: The operating system must be process oriented.
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'10 ( 9); A proc~ss must be ready to run prior to being,

19allocated. to a processor..;

19( 5): initialy one process is created for each

user! job,

23 (7): Ready processes are scheduled in simple round-

robnr fashion,.

25 ( 8): A, process shall be blacked while awaiting

synchronization with another process.

29 ( 6): Reference-to a process is bysymbolic name.

47 ( 4): The message facility must be, accessible to

all processes.

56' (10): The user process may dynamically create and

- destroy other user processes.

MS 2-B Process/Operating System Interface:

7 ( 4): The operating system must run a machine that

has two states.

11 ( 8): User communication with the operating system

is via SVC instruction.

15 ( 6): SVC instructions are user callable.

.17 ( 2): SVC instructions are executed in the super-

"isor state.

26 6)': A process shall be blocked when it specifi-

cally relinquishes control to the process

scheduler.

63 ( 8): User processes must schedule completion.
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MS 2-C Proceiss Time-Slicing:

27 C(6): The traffic controller musttimerslice CPU

usage to achieve, multi-programming.

24 2),: A process shall he blocked whena timer run-

out trap is -detected.

'44 (0): 0 An. intdtrupt handler must be provided.

Main Subproblem 3:- Resource, and- Memory Management Functions:i

MS 3-A Resource Allocation:

8 (10): Ali resource requests must pass through the

supervisor.

9 ( 8) System resources must be allocated to a job,

prior to the job being made eligible to run.

13 (12): The operating system must utilize information

tables to monitor and controi processing.

14 ( 4): System tables can be, dynamically allocated

and released.

30 (9): The operating system must allocate memory for

job partitions the size of which: is

specified by the user,.

31 ( 7): Memory is allocated in 2K blocks.

32 (11): Operating system must dynamically allocate

memory for itself.

33 (4): Memory is allocated using a best-fit algo-

rithm.

35 ( 7): Free storage areas are collapsed into

(.. continguous blocks of memory whenever a

• k
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() partition is- freed.

'50 (2)' Messages are of an arbitrary yet Specified'

length-.,

51 ( 5): Any number of messages may be queued.

60 ( -9): User processes cannot dynamically allocate

memory.

MS.3-B Protection:

34. 9 9). Memory must be protected to prevent the

simultaneous allocation, of. a partition to

multiple jobs.

59 (7): Dynamically created processes must run in the

same partition as the parent job,.

62 (4): The user processes run in the problem state.

Main Subprobiem 4: Supervisor Process:

18 ( 6) : SuPervisor process must create and delete

the environment in which a job runs.

27 (10): Supervisor routine must reclaim all system

resources when a job has completed.

28 (9): Supervisor process must reclaim all system

resources when- an error condition abnormally

terminates a job.

61 (6): User cannot destroy system process within

:the same process group.

Main Subprobiem 5: Device Management Functions:

k 36 (16); Operating system must supply a device manage-



ment routine.

38 AjlQ; All devices are allocated.

-39 ( 9); Device handler ro-utine Supports -one card

reader/input stream.
40 (6): Device'hander must support one line printer/

output stream.

41 ( 8)~ I/O devices operate via multiplexor channel.
42. ( 7): The user can provide his own routines for

non-standard devices.
64 ( 6): The user's job can reference 1 input, 1 output,

1 exceptional type of device.

Main Subproblem 6: Message Facility:

< 46 (12)Y: A message facility must be provided.

48 ( 5): The name of the sending process must be pre-
-fixed-to a message.

49 ( 7): The receiving process must read the name and

text of a message.

52 ( 2): All messagesare released when a propess

terminates.

53 1 4): 'The receiver of a message may destroy the

message without acknowledgement.
54 ( 5): Zf no messages are available to a process which

expects one, it gets blocked.
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APPENDIX G

Final Requirements Definition.



1. The operating system must be simple, implementing.

a basic system nucleus.

DEFINITION: The operati#ng system is: to be simple

in the sense that it is to implementonly those
features most essential for learning the funda

mentals of the operating system. Therefore, the

system is to implement a basic system nucleus

to include the following, features:

Multi-programming;

--- Basic multi-programming support;

Dynamic memory allocation;

--- Device management;

(U --- Simple top level supervisor; and

--- Traffic control.

IMPLICATIONS.FOR DESIGN: The nucleus does not

include the following:

--- language processors;

--- utility programs;

--- spooling;

file systems;

application packages;

--- debugging facilities; and

--- subroutine libraries.

2. The operating system must be designed as a peda-

gocial tool.

.A (
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DEFINItION: Since the operating system. is to be

used as an instructional tool, simplicity and

easy identification. of the major functions are

the -objZ;ctives of the design. As previously

describe,, the heirarchical operating system-

structure enables:

easy identification-of the relevant sections

for processor management, memory management,

and device management; and

identificatinof, the, well-defined ;inter-

faces between the various functiona1

section.

IMPLICATIONS FOR DESIGN: The design concepts of

extended machine instructions and >,eirarchical

operating system structure have been selected;

as the optimum method of satisfying the design

objective.

Also the pedagocial c> tty of the operating

system is preferred to perforrmance.

3. The operating system must be process oriented.

DEFINITION: The requirement is vague as it

stands, yet it recognizes the fact that there

are certain requirements necessary to support a

process. The following entities eist within

the system:

%i --- job stream: sequential;
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job: collection of 'activities needed, to do

0 the work required;

process group: prqcesses-belonging to the

same job; and'

-6 -process: a: system-created- entity which is

the smallest computational -entity with which

the system must deal.

IMPLIdATIONS FOR DESIGN: Therefore, the opera-

ting system must-provide certain basic functions

by the extended machine including:

P-V operations;

--- basic multi-processing support; and

....traffic controlling.

The software functions can be thought of as being

K executed-in the same way as hardware instructions.

Again, the basic functions represent what the

operating system must accomplish; the extended

machine implements the requirements.

II. Design Constraints

4. The operating system must be small; occupying

fewer than 2500 cards of assembly language state-

ments.

DEFINITION: It was not clear from the system

description that the requirement occurred "post

hoc, ergo propter hoc".

If, in fact, this was a, design constraint

then it must be analyzed in conjunction with the
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requirements for smplicity and, a basic nucleus.

Cl:early, add1ng more simplistic capabi'ities to

the systei'ncreases the number of assembly

language dtatements and at some point, would

conflict. Itwas assumed that since the actual

operating3:ystem deck 2500 that this require-

ment was not signifc;xt.

5. The-operating system is to be implemented

utilizing IBM System/360 hardware.

DEFINITION: This simple requirement has far-

reaching significance for the design; specifi-

cally , the hardware constraint has implications

for the following functions:

--- IBM/360 is a two-state machine;

(problem, supervisor states identified)

--- Protection is provided in 2K blocks;

(protection must be provided to match memory,

allocation is in 2K blocks)

Interrupt mechanisms are hardware functions

which dictate what sort of interrupts are

recognized and how they are processed.

IMPLICATIONSFOR DESIGN: Since the guidelines

for defining requirements called for indepen-

dence among requirements, it was not clear if

the implication of the constraint needed to be

stated explicitly as requirements.
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Since the-design constkaints were-,not

assessed with the remaining design requirements,

it was decided t~odraft the implications of the,

design constraint and -to include these in the

assessment process.

6. 'The input/output devicesare limited to card

reader for input job streams, and line printers

for output.

DEFINITION: This was a, design constraint,-

imposed "a priori", which limits both -the,,

flexibility and complexity of the operating

systftm.

(-" IMPLICATIONS FOR DESIGN: This requirement

reduces the variety of ,hardware and, therefore,

the scope of the device management functions of

the operating system. The impact of the

requirement is specifically written into

subsequent requirements.

III. Design Requirements

7. The operating system must provide for a multi-

programming environment.

DEFINITION: Multi-programming - multiple job

streams from different sources,.

IMPLICATIONS FOR DESIGN: The operating system

must have the facilities for:

input stream interpretation - those

I



I functions which, delineate jobs,,and job ,steps;

--job control-those functions of the operatin4,

system which control the processing of a job

in the system; and

-- job scheduling - those functions--which pre-

pare ajob for execution.

Limitations on Multi-programming: There must

be some sort of a limit estabiished for the

number of jobs that the operating system can

handle. In fact, the system is limited by:

1. 15 protection keys;

2. the number of I/O stream must equal the

number of devices; and

3. the amount of memory available.

8. The operating system must.run on a machine that

has two distinct states.

DEFINITION: The two states are probleni state

and supervisor state. This requirement implies

first that user programs execute in the problem

state, and second, a processor can correctly,

execute privileged instructions only in the

supervisor state. Privileged instructions

include requests to:

--- change the state of the machine;

--- start I/O;

( --- change the protection rights of memory; and
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0 -- can e, e trupt states of -the-machine .

since the operating .system includes the imple-

mentation, of the eXtended machine concept,

these instructions may take advantage of the

dual. state machineby making system routines

unavailable to the user and, therefore,, only,

certain selected routines are. user callable.

IMPLICATIONS-. FOR DESIGN: Therefore, the,

operating system must, have the capability to:

--- distinguish machine state;

--- identify privileged instructions; and

identify user-callable extended machine

instructions.

9. All resourcerequests must pass through the

supervisor process.

DEFINITION: The supervisor routine, is a top-

level process that establishes the environment

in which a job will execute. Initially, all

resources required by a given job are stated,

explicitly on JCL cards. The supervisor routine

cootdinates requests for redources prior to

'creating-a process for the job.

IMPLICATIONS-.FOR DESIGN: The tasks which the

supervisor must perform are as follows:

--- allocate memory;

--- allocate devices required;
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--- read the user deck into his partitin;

- start user Progess; and

upon- completion, reclaim all resources.

1Q. System resources, must :Be allocated to a job

prior to the job being made iligible to run.

DEFINITION: The specific resources'consist of

memoryand inputi/otput devices-.

IMPLICATION FOR'DESIGN: These resource allo-

cations are made at a job level. There are other

resources which. are allocated at the -process

level.

11. A process must be ready to run prior to being

allocated a processor.

DEFINITION: Resources required at the process

level consist of only the processor.

IMPLICATION FOR DESIGN: Since resource alloca-

tions are made at the process level, there must

be a traffic Controller routine to create a

process-oriented environment and the system must

have some means of determining when a process is

not eligible to run.

12. User communication with the operation system is

via special call.

DEFINITION: What need has the user of communi-

cating with the operating system? Once all the
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resources are alocated, must there 'by any

communication? These questions require the user

to communicate with. the operating system:

create-a process;.

destroy a process;

--- halt job and, signal supervisor;

--- find' a PCB given its name;

read a message;

--- send a message;

start/stop. process,;. and-

abnormally terminate the job.

IMPLICATIONS FOR DESIGN: The operating system

must take action based on the user requests.

13'. The operating system must protect user jobs from

each other.

DEFINITION: Protect in this sense means to

prohibit unauthorized access to memory locations.

IMPLICATIONS FOR DESIGN: For purposes of this

system, a separate supervisor process exists in

a separate process group for each job stream.

There is no communication between process of

different jobs; therefore, they essentially are

invisible to each other.

14. The operating system must utilize information

tables to monitor and control processing.

DEFINITINi The operating system must maintain



.information on a varying numiber of jobs,

processesi and' resouresi This requirement

attempts to identify the table and thereby mini-

mize proliferation and redundancy of system

information.

IMPLICATIONS FOR DESIGN: The following informa-

tion tables exist in the sample operating system:

nucleus databases;

--- process control block -one per process

containing save areas, used by the system

routines for storing the status conditions,

and semaphores;

--- memory - free storage blocks;

--- processor management - message facility; and

--- device management - unit control block

stored in a permanently allocated area for

every unit.

Noticq-othat as previously stated, the emphasis

for all transactions is at the process level;

therefore, the process control block contains

most of the system information.

1 15. System tables can be dynamically allocated and

released.

[1 ]DEFINITION: System tables refer to those tables

built and maintained by certain system processes.

Ki These tables include:r<
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,-,-process control block)

semdphores:;,

-- " free storage block;

message; and

unit control block.

IMpLICATIONS FOR DESIGN: The operating system

i~t~~be~apaJ~eof d&Ynzmically aldating- memnory-

to itself for these tables.

A-possible deadlock could occur at the point.

of a user's program which consumed all of memory;

namely by continually writing messages. The

system has no built-in limiting functions to

identify such overrun conditions.

16. Certain system routines are user callable.

DEFINITION: The nucleus routines are the SVC

instructions of the extended machine concept.

Some of the routines allow unrestricted memory

reference and, therefore, are not available to

the user.

IMPLICATIONS FOR DESIGN: When an. SVC instruction

is issued, the handler routine must check to

see if the operation requested is, in fact, user-

callable.

17. System process routines are re-entrant and

shared.
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Cs DEFINtTION: System, process have -only one copy

resident in the system. Therefore, they must be

efficiently shared in a muiti-programming

environment. Pure: procedure operates only on

variables in registers or in separate data seg-

ments associated with the job.

IMPLICATIONS FOR DESIGN: The need for pure

procedure is driven by the need for a multi-

programming environment. The, system can set

locks through the P-V operations to prevent,

race conditions.

18 Extended machine instructions are executed in the

supervisor state.

DEFINITION: The extended machine instructions-

along with the normal hardware instructions,

comprise the nucleus of the system. SVC handler

is used to activate the extended machine

instruction and transfer between loads.

IMPLICATIONS FOR DESIGN: When an 'SVC instruc-

tion is issued, a supervisor call interrupt

occurs and control is transferred to SVC

handler routine. Therefore, an SVC handler

interrupt must be provided.

19. The supervisor process must schedule jobs and

prepare the jobs for execution.

DEFINITION: Th4 supervisor routine initially
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creates a process. Theuser may generate his

own, processes by SVC instructions during

execution of- his-process group. This require-

ment deals only with- establishing the, uSER PROG

and not with specific resource allocations.

IMPLICATIONS FOR' DESIGN: This requirement is- an

explicit -statement of one of the functions of

the supervisor picess. The following instruc-

tions apply:

--- a non-system process cannot stop a system

process; and

--- a process must be stopped prior to its being

deleted'.

C,' 20. Initially one process is created for each user's

job.

DEFINITION: One process iscreated by the

supervisor process after all job level resources

have been allocated to the job.

IMPLICATIONS FORDESIGN: The user must create

any additional processes desired on his own.

21. Jobs are initiated strictly on a first-come,

first-served basis.

DEFINITION: Jobs are read into the system in

the form of job streams from card readers.

Jobs are accepted into the system as long as

sufficient resources exist. Since there is no
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spooling capability, a job cannot be copied in

the system. Once in the system, user jobs are

redefined in process groups which contend for

the processor in a multi-programming environment.

IMPLICATIONS FOR DESIGN: The supervisor process

must determine if it can schedule a job before

reading it into the system.

22. the supervisor process must be modularized so

that improvements to the system can be easily

accomplished.

DEFINITION: The system description indicated

that sophistication of job scheduling is limited

(_ by the brevity of the implementation. There-

fore, the system could easily be eytended to

provide more advanced features and facilities.

Modularization of the function was critical, not

for pedagogical clarity, but to provide for

system improvements.

IMPLICATIONS FOR DESIGN: Although modularized

design was emphasized as a design philosophy for

pedagogical clarity, it is now emphasized to

allow easy improvement. This function should be

designed incorporating interface features easily

adaptable to a system which will implement

advanced features such as spooling.



23. The process scheduler must time-slice cPU

usage among ready processes to achieve multi-

programming.

DEFINITION: Traffice-controller resides in the-

process managemenr', lower level, and enables a

process to run:until a certain. time quantum has

elapsed; at wh~ich time, the process is stopped

and another started. A process is ready when it

is not blocked or waiting for the completion of

some external event such as I/O operation or for

a message from another process.

IMPLICATIONS FORDESIG: The traffic controller

schedules ready process in a round-robin fashion.

Interrupts must be enabled to identify when a

P;ocess:

--- exceeds its- time quantum;

--- becomes blocked; and

--- relinquishes control to the traffic

controller to await the completion of an

external event.

24. Ready processes are scheduled in simple round-

robin fashion'by the process scheduler.

DEFINITION: Roiund-robin scheduling means that

processors are Sequentially scanned until a

ready process is. found.
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IMPLICATIONS FOR DESIGN: The traffic controller

must maintain a current list of processes from

which to select the next ready process.

25. A process must be bl~cked-and-control released

to the process scheduler when a time quantum of

50 ms is exceeded.

DEFINITION: Timer runout trap must be indicated

when a process exceeds its time quantum. By

blocking a process is meant that it is ineli-

gible to run temporarily.

IMPLICATIONS FOR DESIGN:- Interrupt mechanism

must be provided to detect a time runout.

( 26. A process shall be blocked and control passed,

to the process scheduler when theprocess must

wait for synchronization with another process.

DEFINITION: Multiple process creation may

require that one process await the completion of

a previous process in order to run.

IMPLICATIONS FOR DESIGN: Some mechanism (basic

primitives) must be provided for the synchroniza-

tion of processes.

27. A process shall be blocked and control passed

to the traffic controller when the process

specifically relinquishes control to the process

scheduler.

DEFINITION: A user process may actually finish

___________________
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execution and relinquish control to the traffic

controller.

IMPLICATIONS FOR-DESIGN: User prcess!,must

signal termination stop process instructions, or

abnormal termination.

28. The supervisor process-must reclaim all system

resources from a job when the job-has completed.

DEFINITION: Reciaimation-of resources is

accomplished on a job level, since processes

only gain theuse of a processor.

IMPLICATIONS FOR DESIGN: This requirement

implies successful completion of a job; there

are such things as unsuccessful completions.

The supervisor must at this point:

--- print a message on the printer;

--- destroy all processes created for or by the

user job;

--- free memory partition,, and

move on.

A message must be available to signal successful

completion.

29. The supervisor process must reclaim all system

resources when an error condition is caused which

terminates processing for a process.

DEFINITION: An error in one user process which

reaches the supervisor level, is capable of



C terminating processing- for the entire process,

group.

IMPLICATIONS JFOR DESIGN:

--- certain error conditions must be defined,

remember that this. system does not have

debugging facilities;

t#he supervisor must perform the same func-,

tions as in the previous requirement; and

-- an error message must be provided.

30. Reference to processes within a process group

is by symbolic name.

DEFINITION: In order to communicate back and

forth -user processes must be able to identify

* each other. Therefore, each process is given a

name by the process that creates it.

IMPLICATIONS.FOR DESIGN:

--- each process must be named by the process

-creating it; and

--- each process must have a unique name field

in order to identify it.

31. The operating system must allocate memory for a

job, the size of which is to be specified by

the user.

DEFINITION: The operating system provides

routines that will allocate a block of memory

(of a given size and given address alignment

F
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using a best-fit algorithm.

IMPLICATIONS FOR DESIGN:

user must specify the job partition size

required by JCL;

the operating system must maintain a list

of storage areas, accomplished using free

storage block list; and,

a queue is established for those jobs

awaiting memory.

32. Memory islallocated to a job in contiguous 2K

blocks.IDEFINITION: Partitioned allocation for user's

jobs is a simple memory requirement scheme

which facilitats multi-programming. A block is

a uniquely named group of words whose addresses

are contiguous.

IMPLICATIONS FOR DESIGN:

--- the user must specify memory requirements in

increments of 2K; and

--- the operating system should allocate memory

such that the amount of wasted memory is

minimized.

33. The operating system may dynamically allocate

memory to itself for temporary work space or

traffic areas for system processes.
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DEFINITION: All system tables and system

processes which do not: run in the user"s process

need temporary memory allocated, to them.

Dynamic: memory allocation means that partitions

are-created as-required duiring processing.. -The

operating system ma use these areas for:

-- work space for systemprocesses; or

--- temporary buffer areas for message storage.

IMPLICATIONS FOR DESIGN: Tables must be main-

tained, testing free and allocated storage areas,

usually using a chaining method to fac±i tate

the dynamic nature of allocation scheme.

- 34. Memory is allocated using a best-fit algorithm.

DEFINITION: The memory allocation algorithm

cycles through a free storage list, which is

arranged in ascending order, until it finds a

block large enough to contain the requested

area. In order to minimize breakage, the

allocated area with the specified alignment is

selected as close to the beginning of the block

as possible.

IMPLICATIONS FOR DESIGN:

--- excess memory is re-linked to a free storage

list whenever memory is allocated; and

--- a free storage list, arranged in ascending

order, must be available in order to

L. ............
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0 accomplish the best-fit scheme.

35. Memory must be protected, to prevent the simul-

taneous allocation of a partitiOn to multiple

jobs.

DEFINITION: Memory protection is a hardware

function in the IBM System 360. Each partition

is assigned a protection key (1through q5).

The "0" key is reserved for the operating

system. Since the hardware actually 4ssociates

the keys with each 2K byte block of memory,

partitiOns must be multiples of 2K, and all

locks within a partition are set to the same

-( value. Access control functions are thosp-

functions which protect an area of storage

against unauthorized access by:

--- insuring that all storage references by an

executing task fdr thb purpose-of writing,

executing and/or reading in that storage

are are legal; and

provides a task from modifying areas of

main Storage beyond the limits.

IMPLICATIONS FOR DESIGN;

protection keys must be assigned and set when

memory is allocated; and

--- partition locks must be tested prior to

allowing access to memory.
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316. Free storage areas are collapsed into contiguous

blocks of memory whenever a job paftition Is

freed.

DEFINITION: Since memory is allocated ih con-

tiguous blocks, the-operating system must re-

combine memory partitions. and update its list

of free-areas.

IMPLICATIONS FOR DEUGN: Memory is to be,

reconfigured and the list of free space updated

and re-ordered whenever a partition of memory

is freed.

37. The operating system must supply a devicemanage-

ment system which runs as a separate process,

one per device.

DEFINITION: The device management system:

pr- povides the routine necessary to issue the

I/O commands;

--- monitors the- /0 devices; and

--- interprets the status information when an

I/O interrupt occurs. It must also maintain

interfaces to process management interrupt

handlers and event monitoring functions.

IMPLICATIONS_FOR DESIGN:

management system can use semaphores as locks

-against two processes simultaneously
C'
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attempting: to access the same device; and

the fielding and. handling -of input/dtput

interrupts are performance by a special

routine thatis involved -whenever an I/0

interrupt occurs. It runs for a very short

time, Just long enough to store status

information and perform a V operation on

Wait-Semaphore.

38. Device handler routines must support, multiple

job streams from card readers.

DEFINITION: Support means that the routines

must distinguish among:

( - job control cards;

--- object-deck;

--- data cards;

and to delineate jobs and job steps.

IMPLICATIONS FOR DESIGN: Each card reader

represents an input job stream.

39. A device is-dedicated to a tob.

DEFINITION: A dedicated device is allocated to

a job for the job's entire duration; this is

especially applicable to card readers and

printers. Allocation is made by the supervisor

during job definition.

IMPLICATIONS FOR DESIGN:

S( --- a card reader represents an input job stream;
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, a' line prihnter mustbe allocated to a job,

prior to the job beihg made eligible to run.

40. The,,device handler routine supports one card

reader per input stream.

DEFINITION: i/o that can be processed sequen-

tiaily to terminate an I/O stream. A single card

reader then is used- to read in an entire job

stream.

IMPLICATIONS FOR DESIGN: The system can continue

to accept jobs as long as sufficient responses
are allocatable. As soon as we reach the

resource limit we must stop reading in jobs.

(-A Therefore, the supervisor process must allo-

cate resources as jobs are being used in in

order limit the number of jobs at the appropriate

time,~

The user must specify a name for his input

stream on JCL.

41. The device handler routine must'support one line

printer per output stream.

DEFINITION: The user may specify a certain

output device in his JCL.

IMPLICATIONS FOR DESIGN: The device name for

output must be specified in JCL.

42. The user must provide his own routines for non-

standard devices.
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DEFINIIT1IN: , The user may supply his own routine

to issue his own I/O commands.

IMPLICATIONS FOR DESIGN: The user must indicate

the use of a non-standard device in his JCL

statements. The device handler process must

supply a routine to handle the. interface for

devices wherein the-.user wishes to provide his,

ownr I/O' commands .

43. A process synchronization mechanism must-be,

provided to serve as a lock on a database.

DEFINITION: The process 'synchronization

mechanism is the P-V operations used- in cdnjmncr-

tion with semaphore.

--- P operation & of value >Othen value = Value-I

if value < 0 then Value=value-I

and the process is ineligible

or blocked.

V operation - if No processes are ineligible

then value=value+l

if there is a process ineligible

then.value-value+l

and the waiting process is

eligible.

--- Applications - the semaphore when the initial

value=l can serve as a lock by
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reqUiring. 'P-operatin before

accessing and a V-operation

afterwards, can insure integrity

of a resource.
IMPLiCATIONS FoR DESIGN: P-V operations can be,

used to, provide protection for -databases .

44. A process-synchronization mechanism must be

[I :provided for the timing of synchronous processes.

DEFINITION: For processes which require synchro-

nous processing, the P-V operations can be used

to insure that ,such synchronization takes place.

IMPLICATIONS FOR DESIGN: Since P-V operations

are available only to system process, this

technique may be used to insure that system

processes run in sequential order.

45. A process synchronization mechanismmust be

provided for synchronization between the sender

and receiver in message processing.

DEFINITION: A message facility is available to

all processes for interprocess communication.

The P-V operations can be employed by the

message facility to insure that messages are

synchronized and queued.

IMPLICATIONS FOR DESIGN:. The P-V operation can

be used to establish a message queue facility.

46. A process synchronization mechanism must be

provided to lock a device.

I
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DEFINiTION: All devices are dedicated, one per

j'ob. 'The P-V operation can be used to.lock each

device.

IMPLICATIONS.FOR DESIGN: The P-V operation can

be used to lock devices.

47. An interrupt handler routine must be provided

for I/O interrupts.

DEFINITION: An interrupt is an occurrence that

causes the processor to take some immediate action.

The IBM System/360 has a mechanism for being

interrupted, saving its status, determining-what

general class of interrupt has occurred, and

executing an appropriate interrupt handler routine.

IMPLICATIONS FOR DESIGN: The interrupt handler

determines the cause of the following faults an4

calls the appropriate operating system function.

In this case, it calls the I/O interrupt handler.

48. An interrupt handler routine must be provided for

program interrupts.

DEFINITION: Program interrupts consist of inter-

rupts employed within the program structure to

enable a synchronous processing.

IMPLICATIONS FOR DESIGN: This facility is

available only to system processing and must be

provided for that purpose.

49. An interrupt handler must be provided for

( supervisor call interrupts.

Ik
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U DEFINITION: Supervisor call interrupts are,

required to recognize SVC instructions. This

mechanism is used to activate the eLtended machine

Instructions and to transfer between levels of

the system.

IMPLICATIONS FOR DESIGN: The operating system

must include a supervisor call handler.

50. An interrupt handler must be provided to deal with

external interrupts.

DEFINITION: External interrupts are generated

outside of the operating system due.to external

conditions; specifically, timer runout trap.

IMPLICATIONS FOR DESIGN: The operating system

may utilize the timer function to provide for a

multi-programming environment.

51. P-V Operations are available only to system

processes.

DEFINITION: Since the P-V operations in effect

control the synchronization of the operating sys-

tem and lock various resources, they are available

only to operating system processes for use.

IMPLICATIONS FOR DESIGN: User processes must have

another mechanism available to synchronize their

processing.

52. A message facility must be provided to all

processes.

I'
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0 DEFINITION: The message fAc, ".ty must be avail -

able for interproce§s communication to all

processes in, the systemi.

IMPLICATIONS FOR DESIGN:, User processes must be

identifiable by name. The message facility must

recognize:

--- a sender;

-- a receiver;

--- the size of the message; and

--- the text.

The message facility must be able to queue up

messages to a- given process, uses memory manage-

ment for message buffers, uses P-V operations to

synchronize message flow.

53. The process receiving a message must be able to

determine the originator of the message.

DEFINITION: The receiver of a message must be able

to determine from whence it came.

IMPLICATIONS FOR DESIGN: A process may be kept

waiting for a message from another process, as a

means of synchronization.

54. The receiving process may read the name and text

from the originator.

DEFINITION: In order to respond to a message the

receiver must be able to verify that it is the

( correct message from the correct process. In order

to take action on a message the receiver must be

L _ _
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able 'to read- the message.

IMPLICATIONS FOR DESIGN: The receiver must have

the capability to read the name of the originator

and thetext of: the message, but this does not

imply that the message must, in fact, be read.

55. Messages are of an arbitrary, but-specified length.

DEFINITION: The message facility must allow for

a valuable message size.

IMPLICATIONS FOR DESIGN: The message queue must

be dynamically allocated space since the number

and size of messages is variable. Note that no

limit is specified for the number of messages.

56. Any number of messages for a given process may-be

queued while waiting to be read by the process.

DEFINITION: A process can have a varying length

queue of messages waiting to be read.

IMPLICATIONS FOR DESIGN: Each process has a

variabie length message queue which is dynamically

allocated,.

57. All messages, enqueued for a given process to read,

are released when that process terminates.

DEFINITION: When a process terminates, all

messages waiting to be read are freed.

IMPLICATIONS FOR DESIGN: This is performed within

the destroy process SVC by freeing memory used to

store the messages.C'
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58. Messages are not receiptable for, from receiver to

sender.

DEFINITION: The receiver of a message does not

have to acknowledge receipt of any iessage to the

sender.

IMPLICATIONS FOR DESIGN: If the message facility

cannot locate the process for which the message

was intended an error condition is caused.

59. If no messages are available to a process which

expects' one, it may go blocked.

--DEFINITION: The message facility can be used for

process synchronization; therefore, a process is

blocked until properly synchronized.

IMPLICATIONS FOR DESIGN: The user has a mechanism

for the synchronization of various processes.

60. User programs utilize a job control language

statement to specify resource requirements.

DEFINITION: Job Control Language is the means by

which a user specifies and quantifies his resource

requirements to the operating system. For the

purposes of the sample operating system, the

simplified JCL must specify:

--- memory size required;

--- name of input device type;

--- name of the output device type; and

--- non-standard device for which the user will

supply his own handler routine.

7 7-7',AO -WSM , m



- 253 -

IMPICATONS. FOR DESIGN:

--- JCL card is used to delineate job boundaries;

--- It must be the first Card of the deck so that

resource requirements-may be determined.

61. The operating system must accept input data from

the user's job stream.

DEFINITION: The user may input data to be read

and used in execution of the object deck.

IMPLICATIONS FOR DESIGN: The supervisor must be

capable of distinguishing among JCL, object deck,

and data cards for any job.

62. The supervisor process must load the user-supplied

object deck into the user area of memory.

DEFINITION: Once the supervisor has allocated the

resources required for the user's job, the user's

object deck is read into his partition.

IMPLICATIONS FOR DESIGN: This is a function of

t. u; :isor process.

63. All processes may dynamically create additional

processes.

DEFINITION: The user has the SVC instructions

available to him which allows the creation of

additional pr,)cesses.

IMPLICATIONS FOR DESIGN: The user processes run

in the same partition atd state as the initially

( created user proces%. The user may destroy only

user created processes.
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i- 64. Dynamically created processes run, in the same

memory area as the parent job.

DEFINITION: Dynamically created processes must.

share the memory partition allocated'to the

parent job and have the same protection attributes

assigned.

IMPLICATIONS FOR DESIGN: Dynamically created user

processes must be identifiable and are protected

from other jobs in- the same manner as is the

parent job.

-65. User processes cannot-dynamically allocate memory.

DEFINITION: This is directly implied by #59.

Since user created processes run in the partition

of the parent job, no more memory is needed.

However, some people will attempt to get more

memory than they can use.

IMPLICATIONS FOR DESIGN: The user must specify the

memory requirements of the entire job, including

dynamically created processes, once and be satis-

fied with it. Attempting to exceed the user's

memory partition will generate an error.

66. User processes can destroy other user processes

only within the same process group.

DEFINITION: System processes are created for the

use of the operating system and must be maintained.

I These processes consist of supervisor process and

device handler process.

77i
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ientifiable and protected from user destruction.

The user destroys, a. process by unlinking the PCB,

system processes do not-have a specified PCB.

67. User processes run in the problem state.

DEFINITION: The problem state is one of two,

states defined by the IBM System/360.

IMPLICATIONS FOR DESIGN: System processes are

protected from user Violation and/or destruction

6 by the two statesmachine concept.

-68. The user process must signal-completion (successful

or unsuccessful) to the operating system.

DEFINITION: A completion signal? i.e., stop

process, is required so that:

--raffic controller may schedule a process; and

--- supervisor process may reclaim system resources

at the end of a job.

IMPLICATIONS FOR DESIGN:

--- user processes may only stop user processes;

a process must be stopped before it is destroyed.

69. The user's job can reference at most: 1 input

device, 1 output device, 1 non-standard devices.

DEFINITION: The operating system will allow

references to only one each of the three degrees

types.

IMPLICATIONS FOR DESIGN: IO commands operate as

streams unless otherwise specified by the user in
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-the handling of exceptional devices'.

70. There is one supervisor process-per job stream.

DEFINITION: The supervisor process must schedule

all jobs and prepare them for execution by cailing-

other appropriate m ldules-,ofthe system. Functions

of -the supervisor process include:-

determines. the amount of memory required;

set storage protection keys;

--- starts a process in an interface :routine for

each device;

--- reads in the user's object deck;

user process starts to run; and'

--- upon completion, the supervisor process

destroys all processes created for or by the

user frees memory and devices.

IMPLICATIONSFOR DESIGN: The supervisor process

acts as the interface between the user and the

operating system.

71. The I/O interrupt handler routine must provide for

a synchronous scheduling of a process requiring

fast processing.

DEFINITION: The interrupt mechanism transfers

control to the traffic controller causing the

process waiting for the interrupt to start running

immediately. It is, therefore, possible to attain

very fast processing of exceptional interrupts.

IMPLICATIONS FOR DESIGN: Interrupt routine trans-
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'i 0 fers controle t. .. directly to the traffic controller in

order to run a-new process.

72. System Initialization: The operating system must

include a nonsstem resident task which loads the

O/S into the computer and defines the processing

envirdflmelt.

DEFINITION: Initial program load routine ,runs

free. ofmost of the rest of the system, and

serves to initialize supervisor process, and, SVC

routines, essentially by initializing PCB

entries and free storage blocks for memory!

IMPLICATIONS FOR DESIGN: This system is used

, infrequently and depends heavily upon-the final

( ~ implementation design in order to carry out its

functions.
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APPENDIX H

Final, Interdependency Assessment

Note 1: (s) Indicates that the requirement indicated

supports the implementation of the require-

ment being assessed.

(c) Indicates that the requirement indicated

conflicts with the implementation of the
requirement being assessed.

Note 2: Requirements 1 through 6 were not assessed

for the reasons stated in 4.1.10.
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7 ; The operating -system must provide for a multi-

programming environment.

10(s): Resource allocation is performed as a job is

read into the system, except for process

allocation.

13:(s): -A multi-programming environment must include

job protection mechanism.

14(s): Information tables are the mechanism by which

the operating, system monitors and controls the

multi-programming environment.

17(s): The need for pure procedures is driven by a

multi-programming environment.

19(s): The supervisor process creates one process per
C job initially to support multi-programming.

21(s): Multi-programming environment requires that

multiple jobs be scheduled.

35(s): Some memory allocation schente is required to

support a multi-programming environment.

40(s): Device handler routine facilitates the reading

of multiple job streams from diffetent sources.

60(s): JCL assists multi-programming by delineating

jobs and specifying resource requirements.

70(s): The supervisor process controls and synchro-

nize all the functions in a multi-programming

environment.

8. The operating system must run on a machine that has two
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2U(s): User comimunication with the operating system

via a special call ensures that the, user may be

restriCted from certain privileged instruc-

tions..

16 (s),: Only certain special instkucti6nsare, user

callable.

18 (s): Special instructions explicitly executed in

the supervisor state.

49(s): An interrupt handler must be available in

'order to change machine states.

67(s): User processes an restricted to the problem

state.

9. All resource requests must pass through the supervisor

processo

10:(s): All resources, less processor, must be allo-

cated prior to the job being made eligible to

run.

12:(s): Resource requests-are processed as privileged

instructions through the supervisor process.

28:(s): The resources must also be reclaimed by the

supervisor.

29:(s),: Resources are reclaimed when an error condition

terminates job processing.

31:(s): Memory allocation is a resource request.

37:(s): Device management is a resource which must be

allocated.
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Z 6JCL specfie s the: resources required of a job

to the supervL(r process
70:(S) IThesupervisor'process controls all resource

I al-locations.

System resources must be allocated toa job iprior to the

Job being made eligible to run.

S11(c):, User resources; i.e., processe s are allocated

i at :the process level.

I 19(s): The: supetvisor process- allocates all resources

to a job.

31: (s): Memory is an allocatable resource.

-37: (s): The device handler routine is allocated to a
A - job at this-time.

60: (s): JCL enables the, user to identify his resource

needs.

70: (s): The supervisor process controls all resource

allocations.

11. A process must be ready to run prior to being allocated

:a process.

14(s)-: The status of a process is directly maintained

and controlled by information tables.
25(c): A process shall not be ready if it- exceeds the

time quantum.

26(c): A process shall not be ready if it is waiting

to synchronize with another process.
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27,(c),: A process shall not be ready if it specifi,-

-cally relinquishes control to the traffic

controller.

59(c): A process shall not be ready if it iswaiting

-to receive a message.

12. USer communication with the operating sytem is via

special, call.

16(c): Only certain of the special calls are available

to user processes.

27(s): A process may relinquish control to the

operating system via special call.

46(p): The process synchronization mechanism is imp!e-

mented using a special call.

49(s): The supervisor call interrupt is generated by

special call.

52(c): The message facility is another mechanism

employed for user communication.

68(s): The user must signal completion :using a special

call.

13. The operating system must protect user jobs fromeach

other.

14:(s): Information tables contain the information

required to protect user's jobs.

20(s): The creation of a single process initially,

isolates user jobs fromeachother.

35(s)o: The protection of memory partitions can be
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(3) accomplished, with the same implementation

utilized f fe requirement.

64(S): As a protecti1on mechanism, dynamicallycreated

processes rdn in- the memory area- of parent

66(S): To protect jobs, a process can destroy only

those non-system processes within its process

group.

67,(s): User processes run in the problem state to

prevent access to system level functions.

14. The -operating system must utilize information tables to

monitor and' control processing.

15(s): Dynamic allocation of system tables is required

in support of ihult!;-rogrammin4 environment.

24(s): Round-robin scheduling is accomplished most

effectively by chaining the tables together.

32(s): Memory allocation is accounted for in 2K

increments.

33(s): The operating system tay dynamically allocate

memory for information tables.

36(s): Collapsing tree storage areas requires that

the system tables be updated.

43(s): P-V mechanism is used extensively to restrict

access to system tables for protection.

52(s): The message facility requires use of informa-

tion tables extensively.

2I
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15-. System-tables can be. dynamically allocated and

released.

33(s): Dynamic memory allocation facility fully

supports this requirement.

56(s): The queuing of messages requires a dynamic-

memory allocation facility.

66(c),: The user is strictly prohibited from dynamic

memory allocation.

16. Certain system routines are user callable.

18(s): Extended machine instructions are executed,

in the supervisor state to provide a system

check to determine if use is authorized.

51(s): P-V operations are specifically restricted

from the user since these are used as system

locks.

52(s): The message facility is made available to all

users for user communication.

17. System process routines are re-entrant and shared.

33(s): The operating system maintains pure code by

dynamically allocating memory for work space

for system routines.

37(s): The device management process is a system

routine which must be shared among many users.

44(s): The process synchronization mechanism is used

as a lock to synchronize usage of certain

f routines.
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0 70(s): The supervisor 'process is a system, routine

which must be shared'among many jobs.

18. Extended machine instructions are executed in the

supervisor state.

49(S): An interrupt handler must be provided to

recognize and handle extended machine instruc-

tions.

67(c): User processes must run in the problem state,

and generate calls to the -peFating system via

extended machine instructions for resources,.

19. The supervisor process must schedule jobs and prepare

the jobs for execution.

20(s): The supervisor initially creates one process

per job.

21(s): The supervisor schedules jobs strictly on a

first-come, first-served basis.

22,(s): The functions of the supervisor, and the inter-

faces must be clearly defined so that improve-

ments may be easily accomplished.

28(s): Another function of the supervisor routine is

to reclaim all system resources.

29(c): The supervisor must reclaim resources when a

process generates a system level error.

62(s): The supervisor must also load the user's deck

in order to prepare a job for execution.

C 70(s): One supervisor process exists per job stream.
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20. Initially, one process is created' for each user!s job.

63(s): The user Process may create additional

processes to, form a process group after the

userprocess hasbeen initiated.

21. Jobs are initiated strictlyon a first-come, first-

served basis.

22(s): The FCFS scheduling is simplistic; therefore,

we can improve system performance at some later

time by modularizing this function.

40(s): The fact that all input devices are dedicated

card readers, forces the FCFS implementation.

71(c): The provision for a fast I/O processing mech-

anism may preclude a job from being scheduled

strictly FCFS.

22. The supervisor process must be modularized so that

improvements to the system can be easily accomplished.

70(s): Modularization of the supervisor process

requires that its functions and interfaces be

clearly defined so that any change in its

implementation be made explicit.

23. The process scheduler must time-slice CPU usage among

ready processes to achieve multi-programming.

24(s): All processes are scheduled round-robin, so

that the next sequential ready process is

selected for scheduling.
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25(S): The, tpecific time-slice quantum equals 50ms.

50 (s): An external interrupt is generated when a

timer runout is deleted, and a handler must be

provided.

25. Ready processes are scheduled in simple round-robin

fashion by the process scheduler.

26(c): A process is not scheduled it is is waiting

for synchronization with another process.

44(s): A process synchronization mechanism must be

provided to -enqueue ready processes in a chain.

59(s): A process is not scheduled if it is waiting

for message synchronization-with another

process.

63(s): User processes may create additional processet

which must in turn be scheduled.

71(c): The fast I/0 processing mechanism allows imme-

diate scheduling of a process, conflicting

with the round-robin scheduling.

25. A process must be blocked, when a time quantum of 50ms

is exceeded.

50(s): An external interrupt is generated when the

time quantum is exceeded, and an interrupt

handler must process the interrupt.

26. A process is blocked, when waiting for synchronization

( with another process.
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44 (S): A process synchronization mechanism is,

provided .

48(s),: A program interrupt mechanism is provided to

enable a process to signal that it is waiting

for synchronization.

51(s): Process synchronization mechanismis available

only to system processes.

59'(s): The user processes utilize the message facil-

ity to signal other user processes for

synchronization.

27. A process is blocked, when it specifically relinquish

control to the process scheduler.

48 (s): A program interrupt facility is required so

that a process can signal the process scheduler.

68(s): The user must signal completion of a process,

and, thereby, relinquish control of the

processor to the process scheduler.

28. The supervisor process must reclaim all system resources

from a job when the job has completed.

29(c): The supervisor must also reclaim resources if

a user process generates a system level error.

36(s): Free storage areas must be collapsed and recon-

figured when a job ends.

37(s): The device handler routine for a particular

job must be terminated.

43(s): All system locks must be released when a
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U particular job terminates.

46,(s): All devices which are locked by the job must

'be released.

48 (s): The user must signal the end of his job, and

an interrupt handler-must be provided to deal

with the-,signal.

68(s): The user is required to signal completion.

70(s): The supervisor process is restarted when the

job ends just long enough to clean up all the

resources.

29". Supervisor must reclaim system resources when a user

process generates a system level error.

-Upon, ge-ne6Aton of a system level 1error inter-

irupt, a handler must take control and deal,
with the interrupt.

68(c): Normally the user must signal completion, but

this requirement dictates that abnormal ending

must be recognized.

30. Reference to processes within a process group is by

symbolic name.

53(s): The message sending and receiving recognition

mechanism is strictly accomplished by process

names.

54(s): Same as 53.

( 63 (s): Dynamically created processes within a process
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-group must be named as they are initiated.

'64(s): Processes of the 'same process group must run

on the same memory area as the parent job.

66(s): User processes may destroy Other user processes-

only within the sameprocess group-by symbolic

name.

31. The operating, system must allocate memory for a job,

the size of which is to be supplied by the user.

32(c): Memory allocation is limited to 2K increments.

34(s): Memory must be allocated'using a best-fit

algorithm.

36(c): Memory is collapsed into contiguous blocks

whenever it is freed, which enables reassign-
ment.

43(s): The process synchronization mechanism may be

used to lock a database after allocation.

60(s: The user specifies his memory requirements in

JCL.

65(c)': Once initial memory has been allocated, the

user cannot dynamically allocate memory.

32. Memory is allocated in 2K blocks.

34(s): The best-fit algorithm is used to limit the

wasted memory space.

35(s): Allocation is 2K blocks allows hardware protec-

( tion of memory be IBM/360 hardware.
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3 (s): Memory is configured whenever it is treed.

43'(s): The process synchtonization mechanisiw can be

used to lock .a database once memory has been

allocated.

60(s): The user must supply his memory requirements

in 2K increments.

65(c): User process cannot dynamically allocate memory

whereas system process can.

33. Operating system can dynamically allocate memory to

itself for temporary workspace or buffer areas for sys-

tem processes.

35(s): Once allocated, memory areas must be protected

to prevent simultaneous access.

36(s): Memory must be reconfigured by the operating

system whenever a block is freed.

37(s): The device management system requires memory

for temporary workspaces.

43(s): The process synchronization mechanism can be

used to lock databases.

56(s): The message facility requires dynamic memory

allocation to enqueue messages.

65(c): User processes are strictly prohibited from

dynamically allocating memory.

34. Memory is allocated using a best-fit algorithm.

36(s): Memory is configured when de-allocated to

ensure that the largest contiguous blocks are
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av(IJbie to the system.

60(s)o: Theuser must specify his memory requirements.

in a JCL statement.

35. Memory must be protected to prevent the simultaneous

allocation, of a partition to multiple jobs.

43 (s): The process synchronization mechanism is avail-

-able to lock a database.

64(s): Dynamically created process must run in the

same memory partition as the parent job, which

further protects memory.

65;(s): The user is strictly prohibited from dynami-

cally allocating memory which reduces the

( protection requirements.

36. Free storage areas are collapsed into contiguous blocks

of memory whenever a job partition is freed.

68(s): The user must signal completion of his job, to

the operating system so that memory may be

reclaimed.

37. The operating system must supply a device management

system, which runs as a separate process, one per device.

38(s): A device handler routine must be included in

the device management system.

39(s): Since devices are dedicated, only one person

per device is required.

( 40(s): The device handler routine is specifically
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C required to support only one card reader' per

input stream.

41(s): The device handler routine is specifically

required to support only one printer per output

stream.

42(s): The device management system must enable the

user to supply his own routine for non-standard

devices.

46(s): The process synchronization mechanism is avail-

able to lock a dedicated device.

47(s): An interrupt handler routine is provided to

process I/O interrupts.

69(s): The user must declare his devices,, and 'is

limited to a card reader, a printer, and a non-

standard device.

38. Device handler routines must support multiple job

streams from card readers.

39(s): Dedicated devices enable sequential processing-

and simplify the' designation of job stream.

40(s): A card reader represents an input stream;

hence, multiple car' readers represent multiple

job streams.

61(s): One aspect of the device handler routine is to

distinguish among JCL, object deck, and user's

data.

69(s): The user must specify which card reader consti-
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tutes his, input job stream.

39. A device is dedicated -to a job.

40(s): Since devices are dedicated, a card reader

represents an input job stream.

4l(s): Since devices are dedicated, a printer repre-

sents an output job stream.

42(s): Non-standard devices employed by the user must

be dedicated to his job.

46(s): The process synchronization mechanism is

available to lock a device.

60(s): The user must identify the devices used by a

JCL statement.

69(s): The user-must explicitly identify which devices

he is using.

40. The device handler routine supports one card reader per

input stream,.

42(c): The user must specify his own handler routine

for any non-standard devices used.

S-(s): The process synchronization mechanism can be

used to lock a device to an input stream.

60(s): The user must identify the devices used by a

JCL statement.

61(s): The device handler must enable the operating

system to discern between JCL, object deck,

and user's data.

69(s): The user is limited to one card reader or non-
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41. "The device handler routine mUst support one line printer

per output stream.

42(c),: .A user must supply his own hAIndler routine. for

any non-standard devices.

46(s): The process synchronization mechanism can be

used to lock a device for an output, stream.

60(s): The user must specify a printer for use in the

JCL, statement.

69(s)': The user is limited to onelline printer or non-

standard device.

42. The user must provide his own routines for non-standard

- devices.

47 (s): An interrupt handler for I/O interrupts must

recognize that a user is providing his own

device handler routine.

60(s),: The user must specify the use of a non-stand-

ard device in a JCL statement.

61(s): Any non-standard device handler routine must

recognize JCL, object deck, and user's data.

69(s): The user is limited to a single non-standard

device.

43. A process synchronization mechanism must be provided

to serve as a lock on a database.

44(s): The mechanism also may be used for the timing
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of synchronous processes.

45 (s): The mechanism, may also be used fDr synchroni-

zation of the message facility..

46 (s): The mechanism may also be used to lock a

device.

51(s): The mechanism is restricted to use by system

processes only.

44. A process synchronization mechanism must be provided

for the timing of synchronous processes.

45(s): The mechanism is also used for synchronization

of the message facility.

46(s): The mechanism is also used to lock a device.

51(s): The mechanism is restricted to use by system

processes only.

45. A process synchronization mechanism must be provided for

synchronization between the sender and receiver in

message processing.

46(s): The mechanism is also used to lock a device.

51(s): The mechanism is restricted to use by system

processes only.

56(s): The mechanism is used to establish an ordered

queue for the message facility.

ri, 46. A process synchronization mechanism must be provided to

I lock a device.

51(s): The mechanism is restricted to use by system

processes only.S I
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47. An interrupt handler routine must be pr6vided for I/O0

interrupts.

48-(s): An, interrupt handler routine must also be pro-

Vided for program interrupts.

49(s): An interrupt handler routine ,must also be pro-

vided for supervisor call interrupts.

50(p): An interrupt handler routine must also be pro-

vided for external interrupts

61(s): The interrupt handler may be utilized to recog-

nize input data from the -user'-s job stream.

71(s): The interrupt handler must provide a special

facility to enablefast processing Of I/O

- requests for non-standard devices requiring;

frequent updates.

48. An interrupt handler routine must be provided for

program interrupts.

49(s): An interrupt handler routine must also be

provided for supervisor call interrupts.

50(s)-: An interrupt handler routine must-also be

provided for external interrupts.

68(s): The user must signal process completion via a

program interrupt.

49. An interrupt handler routine must be provided for super-

visor call interrupt.

50(s): An interrupt handler routine must also be

provided for external interrupts.

S.--- --
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0 52. A message-facility must be provided to all processes.

53(s): The message facility must enable the process

receiving ,a message to determine the origina-

tor of the message.

54(s): The message facility must enable the process

to read the name and text from the originator.

'55(s): The facility must be able to handle messages

of an arbitrary, yet specified length.

56(s): The faculty must use some sort of chaining to

queue waiting messages.

57(s): The facility mustbe able to release messages

for a process which terminates.

58(s): There is no need for a receiver of a message

(- to acknowledge td the originator.

59(s): Themessage facility can be used for process

synchronization by blocking processes, expect-

ing messages.

53. The process receiving a message must be able to deter-

mine the originator of the message.

54(s): The message determines the originator by

reading the name of the originating process,

separate from the text.

58(s): As long as the receiver knows from whence the

message came, there is no need for receipt.

59(s): A process may be blocked until it receives the

( message it anticipates from a specific process.
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54. 'The receiving process may read the name and text from

the originator.

56 (s): In a queue of multiple, messages, a, process,

must be able to determine the name and text

of the originator,i,

58(s): As long as a process can read the name of the

originator, there is no need to receipt a

message.

59(s),: A process may be synchronized by blocking it q

until it receives the proper text from a given

process.

55. Messages are of an arbitrary yet specified length.

56 (s): Messages may be of a variable length and

number; therefore, a queuing process is A

required to store all messages dynamically.

56. Any number of messages to a process may be queued while

waiting to be used.

57(s): The queued messages may not necessarily be

read by a process; therefore, they must be

released when that process terminates-.

57. All messages, enqueued for a given process to read, are

released when that process terminates.

58(s): A process may never read the messages addressed

to it; therefore, there is no facility required

for receipting.

(I.'



S68(s): A user process must tignal, completion to the

operating system so that the enqueued messages

for that process may be released.

60. User programs utilize-a job control language statement

to-specify resource requirements.

61(s): The.operating system must be capable of

discerning among JCL, user's object deck, 'and'

user's data.

69(s): The user must specify i/O devices in the JCL

statement.

61. The operating system must accept input data from the

user's job stream.

70'(s): The supervisor- process controls the input of

the user's job stream and must, therefore,

separate all the JCL, user's object deck, and

data.

62. The supervisor process must load the user supplied

object deck into the user's area- of memory.

70(s): The supervisor process explicitly performs this

function as it exists, one per job stream.

63. All processes may dynamically create additional process.

64(s): Such processes are limited to the initial user

memory area.

66(s): The user processes can also destroy processes

but these are limited to user processes only.
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-64-4 Dynamically created processes run in the saiememory

area as the-parent job.

65(s) : The user cannot dynamically allocate memory;.

therefore, all user processes mnst run in the

area of? the parent.

66(s):: User processes of different jobs are made

invisible to each other and, therefore, can

only destroy processes within the same process

group.

67(s): The user processes run in the problem state-

andi therefore, are not capable of allocatinq

additional memory.

66. User processes can destroy other user processes only*

within the same process group.

67(s):, User processes run in the problem state and in,

the same memory area as the parent job; there-

fore, user processes of different process

groups are invisible to each other.



-282-

APPENDIX I

Results of the interactive Decomposition
(uPackage for the Second Iteration

(
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REQG

NOLk

RECORDED LINKS'
FROM NODE TO NODE(S).€.

7 1 0)- 10P 1-3, 14,t 17, 19, 21, 35, 40 60, 70

8 ( 5) 12, 16i 18, 49: 67',
9 ( 8) 10, 121 28Y 29i 31Y 37, 60, 70,

10 ( 8) 7p 9,:1i, P 19, 31. Z7,. 6,0, 704
11 ( 6) 10Y 14, 25, 26J 27," 59,
12 ( 8) , 9, 16, 27, 46, 49, 52P 68,.
13 ( 7) 7 14'r 10i 35-, 64i .66 i 67-Y7

14 ( 10) 7,11 i. 13, 15,Y 24, 32, 33, 36, 43, 52Y,
15 ( 4) 14, 33?- 56, 66,
16 ( 5) 8, 1-2y 18, 51, 52,
17 ( 5) 7, 33, 37, 44v 70,
18 ( 4) 8, 16:- 49, 67,
19* 9) 7p 10Y 20-, 21, 22, 28 '9i 6 7 0

(9 20 ( 3) 13, 19: 63,
-21 ( 5) 7i 19: 22: 40, 71,

22 ( 3) 19, 21: 70,.
23 ( 3)' 24: 25, 504.
24 ( 7) 14, 23, 26 y 44: 59, 63: 71,
25 (. 3) 11, p23 r 50 ,

26 ( 6) 11, 24: 44', 48? 51, 59,
27 ( 4) 1'1.P 12: 48i 68:
28 ( 10) 9p 19, 29, 36v 37, 43, 46, 48i 68Y 70
29 ( 5) 9, 19-, 28, 48, 68,
30 ( 5) 53: 54, 63, 64: 66,
31 ( 8) 9: I0: 32, 34, 36: 43, 650: 65,
32 ( 8) 14, 31, 34: 35: 36: 43: -60, 65i
33 ( 9) 14, 15, 17Y 35, 36: 37: 43, 56: 65:,
34 ( 4) 31, 32, 36, 60,
35 ( 7) 7: 13, 32, 33: 43, 64: 65,
36 ( 7) 14, 28: 31, 32: 33 34, 68Y
37 (13) 9 10, 17, 28: 33: 38: 39: 40, 41: 42Y

46, 47, 69:
38 ( 5) 37: 39: 40, 61: 69,
39 ( 8) 37: 38: 40: 41Y 42Y 469 60y 69:
40 ( 10) 7: 21': 37V 387 39, 42, 46, 60: 61p, 69:
41 ( 6) 37, 39, 42: 46: 60: 69:
42 ( 8) 37r 39: 40, 41, 47: 60: 61-v 69,
43 ( 10) 14, 28: 31, 321 33: 35: 44: 450 46, 51 v

( 44 ( 7) 17Y 24, 26: 431 45: 46: 51:
45 ( 5) 43, 44: 46: 51, 56:
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"46 6(') 12, 28:; 37v 39, 40,, 41, 43Y 44, 45Y 51,
47 (7) 37i -42; 48, 49, '5, 61-Y :7i, y
48 ( 8) 26 7 27', 28, 2.9 47, 49, 50, 68,
49 ( 6,)- 8, Y- 2,f 18p 473, 48, 50, Y
50 " 5)" 23f 25,'l .47, 48,i-49,

6). 1'6, 26iA '3 v 44, 4t5y 46Y
52 (10) i2, 14, i6v 53Y 54, 55Y 56, 57, '53, 59?
53 ( 5) 30, 52, 54, 58, 59,v
54 ( 6) J0, 52, 53, 56, .58-, 59,
, -55 2) 52, 56,
56 7) 15, 33, 45, 52, 54, '55v 57 r
5?7 4) Z2,56,v58i 68,
58 1( 4) 52, '53 54, 57,
59 6) 11, 24, 26, 52, 53., 54,
60 ( 12) 7, '9, 10', 31, 32, 34, 39, 40, 41, 42,

6 1, ,6.9i
61- ( 6) 38, 40, 42, 47, 60, 70,
62 ' 2) 19, 70,
63 C5) 20, 24, 30y 64, 661-

64 ( 7) 13, 30, 35, 63, 65Y 66, 67,
65 ( 5) 31, 32, 33, 35Y 64,
66 C 6) 13, 15, 30, 63, 64P 67,
67 ( 5) 8, 13, 18, 64, 66,.
68 7) 12, 27, 28, 29; 36, 48Y 37y"'69 (7) 37v 38Y 39f 40-t '41? 42t 80?

70 ( 9) 7, p 9, I0, .17,p 1'9, 22 8Y6,,2
71 (3) 21, 24, 47,

(AVERAGE No. OF LINKS PER NODE*' 5,225),

REG

DENO

/1,2,3,4,5,6,73,74,75,76,77,78,77,80/

THE FOLLOWING NODES HAVE BEEN REMOVED:
1 2 3 4 5 6 73 74 75 76

77 78 79 80
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NODES HAVE 'EEN RENAMEDAS FOLLOWS:

7- 29 23 51 45.
8 2~ 30 24; 4

.93 31 t' 53, A7
10 4 U, 26 54 48

13 3' 3 27 57 54

562
12 2 34 2 57

13 11 62 56
18 12 40 63 53
19 13,38 412 60 58

20 12 42 34
19 1 44, 3857 ~ 1

24 18 46 40 5

23 19 68 4126

26 20 48 42 70 65

27 21 49 73 2 66
28 22 '50 44

REQ:
DIMN
(PRECLUSTERING COMPLETE)

NO PRECLUSTERING PERFORMED' DISTANCE MATRIX COMPUTED wIrH; F 1.

REQ:

ISOL

ISOLATED, NODES:

REQ:

'DENO'

/66/

THE FOLLOWINO NODES HAVE BEEN REMOVP:

66

LK.. .
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(PRECLUSTERING' COMPLETE,)

N~O PRECLUSTERING PEREORMEDv' DISTANCE MAtRIx. COMPUTED WITH' F' 1

REG:.A
tSIMA

SIMILARITY' MATR-IX C;MPUTED.#

REQ:*
I NPA
.4E-NTER PERCENTAG3E FARAMETERt

INITIAL PARTI-iION *COMPUTED WITH PF 80.00 X,

HCMI.
§E8ET PARTITION MEASURE:#+ 1#263
DO- YOU WANkT Ta' PRINT THE TREE?

NO,

CLUSTER (NO) OBJECTS

1 ( 8) 1 3 4 131It1656 64
2 ( 5) 2, 6 10 1'2 43
3 (4) 5 17 19 44
4 (7) 714 24 57 586061
'S . 9) 8 9 252627 28 2,9 30 -59'
6 Ul2') 11 31 32 33 34 35 36, 41 5,4 5 5

63 65
.7 C 7) 18 20 37 38 39' 40 45
a ( 5) 21 22 23 42 62

(8s) 46 47 48, 49 50' 51 5253
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REG:
HCM2
,BEST PARTITION MEASURE:' 1.,276
DO YOU WANT TO -PRINT THE TREET?

REq:

PRCL

CLUSTER (N0) 'OBJECTS

I (1i) 1 3 4 li 13 15 1 22 23646

2 (13) 2 6 10 12 17 19 21 41 42 43
44, 62 65

3 (9Y 5 18 20 3,V 38 39 40 ,45 3
,4' (7) 7 14 24 57 58 60 61
5 9 ) '8 9, 25 26 27 28 2? 30 59
6- (9)- 3-333 3435 36 54 5563
7 (7) -, 47 48 4.9 50 51 52

gA R

J._ 17, '15-

--- i ,, ; 'I ' . jd o' ' f " "r .:-1.:"... ..

-0 7 2: ", 22 23 .

4 5,7 2 5 6 5

5'., 1 el 8 " 9 .7: 4? 's 4 As T " ; 5

n ?(3 3 .5 " J 5 ,
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Q "HCM3
-BEST PARTITION MEASURE: 1#41"1
DO YOU' WANT TO' PRINT THE TREE?

SET PAPER AND PRESS RETUI3N+

, * 33 ..

63' -*-

, ,I 3 4 -- , ----- -- . . . ., -
31 --------. -_ -- - 1, ,54 ..---- -

t5 I.......------
16 ---- - ----- - - --

S-------------

34 . . . . -*- -

31 -- - I ---
2 ----------

14 -----

43 ~ I I -

16 . ...----- I----- --

56 * - ----

10 --- - -- - *

22--------------------------a 11a a

41 '* a -I

21 .....----- I
Is --------- 7------ 1------------- a------ a

()

5 -- -- . ------------- a a

10

43 ------- as

41 - - --------

61-------- ----- ---------------- I

14-----------------------
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~47" "'* ... -

48 , - ------ -

52 -- -- -------------
- - - - - - - - - - - -- - - - - - - -- -

5 0 - --" .. . ."VI- -
A9 ~----------I
27 . --------- ----- a -.

-------------- ~8 . ...- ... .... --

38 -- i
45 - - -- ----

37 -- --- -------.
40 ---------
29 --- - --------------------------
59 --- * 1

25 -1 - !1-- - -r.
26 ---- -- a

28 ----- -------------
30----------------

MEASURES*
-201.500 -196,00 -191.500 -185,667 -179.167 -172.667

S-1'64,667 -161,667 -155.750 -150.917 -146.167 -140,542
-133.042 -124.792 -120.375 -116,875 -110.792 -104,792
-99,792 -95,292 -92.292 -88o042 -83.458 -80,042
-74#458 -69,458 -63,792 -60.875 -57#958 -53,292
-49,570 -46*617 -43#117 -39,700 -35.422 -30,728
-25,311 -22.978 -20.094 -19.567 -16,408 -14.6i9
-12.669 -10.072 -7.544 -6.707 -5.655 -4o0:L6
-3.307 -2.604 -1.605 -0#371 0.182 0.934
1,183 i,359 1,411 1,387 1.053 0.971
0.893 0.618 0.555 0.070

(i

r
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C)R
PRCL

CLUSTER (NO), OBJECTS

1 ( (9) 1 3 4 1-1 '13 1516 5664
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APPENDIX J

Main Subproblems-Resulting From The

Second Itercation of,-the Decomposition Analysis

N~ote: (11) The number in the parenthesis indicates

the number of interdep)endencies identified

for the requiremdnt.



Main Sub problem 1: Supervisor Process

7 (I0): The operating system must provide for a multi-

programming environment.

9 ( 8),: All resource requests must pass through the

supervisor.

10 ( 8): System resources must be allocated to a job prior

to it being runnable.

17- ( 5): System process routines are re-entrant and shared.

19 ( 9): Supervisor process must schedule jobs and prepare

them for execution.

21 ( 5): Jobs are initiated ,strictly on a first-come, first-

served basis.

22 C 3): Supervisor process must be modularized so that

improvements are easy.

62 ( 2): Supervisor process must load the user-supplied

object deck into memory.

70 ( 9): There is one supervisor process per job stream.

Main Subproblem 2: Extended Machine Instruction Mechanism:

8 (5): Operating system must run on a machine that has

two states.

12 ( 8): User communication with operating system is via

special call.

16 5 5): Certain system routines are user callable.

18 ( 4): Extended machine instructions are executed in the

supervisor state.
Mc

f Main Subproblem 3: Process Control Functions:
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SUBPROBLEM MS ,>A - ProcessScheduli g:

11 ( 6)-: A,,rocess must be ready to run prior to being

allocated a processor.

24 ( 7): Ready processes are scheduled in round-robin

fashion by process scheduler.

26 ( 6):, A process shall beblocked when awaiting synchron-

ization.

59 ( 6): If no messages are available to a process explicitly

then it goes blocked.

'71 ( 3): I/O interrupt handler must provide fora synchronous

scheduling of a process requiring fast processing.

SUBPROBLEM MS 3-B - System Initiated Interrupts:

23 ( 3): Process scheduler must time-slice CPU usage.

25 ( 9): A process shall be blocked when its time quantum

is exceeded.

47 ( 7): Interrupt handler must be provided for I/O

interrupts.

49 ( 6): Interrupt handler-must be provided for supervisor

call interrupts.

50 ( 5): Interrupt handler must be provided for external

interrupts.

SUBPROBLEM MS 3-C - User Process Initiated Interrupts:

27 ( 4): A process shall be blocked when it specifically

relinquishes control.

28 (10): Supervisor routine must reclaim all system resources

when a job is completed.

. .....4nnu n , i m
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( 29 ( 5): Supervisor must reclaim resources when an error

condition is raised.

48 (8): Interrupt handler must be provid! { for program

interrupts.

68 ( 7): User process must signal completion to the opera-

ting-, system.

Main Subproblem,4: Process Creation Functions:

13 ( 7): Operating systemmust protect user jobs from each

other.

20 ( 3): Initially one process is created for each user s

job.

30,,( 5): Reference to a process is by symbolic name.

63 ( 5): All processes may dynamically create additional

processes.

64 ( 7): Dynamically created processes run on the same

memory area as parent job.

66 (6): User processes can destroy other user processes

only within the same group.

67 ( 5): User processes run in the problem state.

Main Subproblem 5: Interprocess Communication:
MS 5-A - Operating System Information Tables:

14 (10): Operating system must utilize information tables

to monitor and control

15 ( 4): System tables can be dynanically allocated and

released.

33 (9): Operating system may dynamically allocate memory
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t to itself for workspace.

MS 5-B -Message-Facility

52 (10): Message facility must be provided to all processes.

53 ( 5): Processes receiving messages must be able to

determine the originator.

54 ( 6): Receiving process may read the name and text from

originator.

55 ( 2): Messages are of an arbitrary yet specified length.

56 ( 7): Any number of messages may be queued.

57' ( 4): All messages are released when a process terminates.

58 ( 4): Messages are not receipted for.

Main Subproblem 6: Memory Allocation Functions:

31 ( 8): The operating system must allocate memory for a job.

32 ( 8): Memory is allocated to a job in contiguous 2K

blocks.

34 ( 4): Memory is allocated using a best-fit algorithm.

35 ( 7): Memory must be protected to prevent simultaneous

allocation.

36 ( 7): Free storage areas are collapsed into blocks when

a job is freed.

65 S ): User processes cannot dynamically allocate memory.

Main Subproblem 7: Device Management Functions:

37 (13): Operating system must supply a device management

system.

38 (5): Device handler routines must support multiple job

"I -' streams.

I
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4 9 8): A device i dediaated- to a job.

40 (10): The device handler routine supports one card

reader per input stream.

41 (6): The device handler routine must support one line

printer.

42 ( 8)': The user can provide his own routines for non-

atandard devices.

-60 (12): User programs use JCL to specify resource

requirements.

61 (6): operating system must accept input data from user's

job stream.

69 ( 7): User's -job can reference at most 1 input, 1 output,

and 1 non-standard device.

Main Subrroblem 8: Process Synchronization Functions:

43 (10): A process synchronization mechanism must be

provided as a lock database.

44 ( 7): A process synchronization mechanism must be pro-

vided for synchronous process.

45 ( 5): A process synchronization mechanism must be pro-

vided for sender and receiver of messages.

46 (10): A process synchronization mechanism must be

provided to lock a device.

51 (6): P-V operations are available orily to system

processes.



APPE.NDIX K

I Linkage -Interface Assessment
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LINKAGE - INTERFACE ASSESSMENT

Cluster
Subproblem Number Module

Process Scheduling 3
System Initia-ed- Process Management

anitiaer (lwr 'module
Interrupt Hander(lower)

User Initiated Interrupt
Handler
Process Sychronization
Mechanism

Memory Allocation Memory Management
Operating. System Module
Information Tables 7

Process Creation 6 Process Management

Message Facility 8 (upper) Module

Device Management lDevice Management

Functions .....

Suparvisor Process 1 Supervisor Process
Module

C- Extended Machine 2 Supervisor Call

Instruction Mechanism Handler

-3
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